Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKaya, Emine
dc.contributor.authorGüneç, Hüseyin Gürkan
dc.contributor.authorGökyay, Sıtkı Selçuk
dc.contributor.authorKutal, Seçilay
dc.contributor.authorGülüm, Semih
dc.contributor.authorAteş, Hasan Fehmi
dc.date.accessioned2023-01-02T11:40:10Z
dc.date.available2023-01-02T11:40:10Z
dc.date.issued2022en_US
dc.identifier.citationProposing a CNN Method for Primary and Permanent Tooth Detection and Enumeration on Pediatric Dental Radiographs. (2022). Journal of Clinical Pediatric Dentistry, 46(4), pp. 293-298 https://doi.org/10.22514/1053-4625-46.4.6 ‌en_US
dc.identifier.issn1053-4628
dc.identifier.issn1557-5268
dc.identifier.uriWOS: 000860237700006
dc.identifier.uriPubMed ID: 36099226
dc.identifier.urihttps://hdl.handle.net/20.500.12900/133
dc.description.abstractObjective:In this paper, we aimed to evaluate the performance of a deep learning system for automated tooth detection and numbering on pediatric panoramic radiographs. Study Design: YOLO V4, a CNN (Convolutional Neural Networks) based object detection model was used for automated tooth detection and numbering. 4545 pediatric panoramic X-ray images, processed in labelImg, were trained and tested in the Yolo algorithm. Results and Conclusions: The model was successful in detecting and numbering both primary and permanent teeth on pediatric panoramic radiographs with the mean average precision (mAP) value of 92.22 %, mean average recall (mAR) value of 94.44% and weighted-F1 score of 0.91. The proposed CNN method yielded high and fast performance for automated tooth detection and numbering on pediatric panoramic radiographs. Automatic tooth detection could help dental practitioners to save time and also use it as a pre-processing tool for detection of dental pathologies.en_US
dc.language.isoengen_US
dc.publisherPediatric Dental Radiographsen_US
dc.relation.isversionof10.22514/1053-4625-46.4.6en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDeep learningen_US
dc.subjectTooth enumerationen_US
dc.subjectPanoramic radiographen_US
dc.titleProposing a cnn method for primary and permanent tooth detection and enumeration on pediatric dental radiographsen_US
dc.typearticleen_US
dc.departmentİstanbul Atlas Üniversitesi, Diş Hekimliği Fakültesien_US
dc.authoridHüseyin Gürkan Güneç / 0000-0002-7056-7876en_US
dc.contributor.institutionauthorGüneç, Hüseyin Gürkan
dc.identifier.volume46en_US
dc.identifier.issue4en_US
dc.identifier.startpage293en_US
dc.identifier.endpage298en_US
dc.relation.journalJournal of Clinical Pediatric Dentistryen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster