dc.contributor.author | Kaya, Emine | |
dc.contributor.author | Güneç, Hüseyin Gürkan | |
dc.contributor.author | Aydın, Kader Cesur | |
dc.contributor.author | Ürkmez, Elif Seyda | |
dc.contributor.author | Duranay, Recep | |
dc.contributor.author | Ateş, Hasan Fehmi | |
dc.date.accessioned | 2022-12-06T16:41:41Z | |
dc.date.available | 2022-12-06T16:41:41Z | |
dc.date.issued | 2022 | en_US |
dc.identifier.citation | Kaya, E., Gunec, H. G., Aydin, K. C., Urkmez, E. S., Duranay, R., & Ates, H. F. (2022). A deep learning approach to permanent tooth germ detection on pediatric panoramic radiographs. Imaging Science in Dentistry, 52(3), pp. 275-281 https://doi.org/10.5624/isd.20220050
| en_US |
dc.identifier.issn | 2233-7822 | |
dc.identifier.uri | 2233-7830 | |
dc.identifier.uri | WOS: 000853675700001 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12900/114 | |
dc.description.abstract | Purpose: The aim of this study was to assess the performance of a deep learning system for permanent tooth germ
detection on pediatric panoramic radiographs.
Materials and Methods: In total, 4518 anonymized panoramic radiographs of children between 5 and 13 years of
age were collected. YOLOv4, a convolutional neural network (CNN)-based object detection model, was used to
automatically detect permanent tooth germs. Panoramic images of children processed in LabelImg were trained and
tested in the YOLOv4 algorithm. True-positive, false-positive, and false-negative rates were calculated. A confusion
matrix was used to evaluate the performance of the model.
Results: The YOLOv4 model, which detected permanent tooth germs on pediatric panoramic radiographs, provided
an average precision value of 94.16% and an F1 value of 0.90, indicating a high level of significance. The average
YOLOv4 inference time was 90 ms.
Conclusion: The detection of permanent tooth germs on pediatric panoramic X-rays using a deep learning-based
approach may facilitate the early diagnosis of tooth deficiency or supernumerary teeth and help dental practitioners
find more accurate treatment options while saving time and effort.(Imaging Sci Dent 2022; 52: 275-81) | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Korean Academy of Oral and Maxillofacial Radiology | en_US |
dc.relation.isversionof | 10.5624/isd.20220050 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Tooth Germ | en_US |
dc.subject | Radiograph | en_US |
dc.subject | Panoramic | en_US |
dc.subject | Pediatric Dentistry | en_US |
dc.title | A deep learning approach to permanent tooth germ detection on pediatric panoramic radiographs | en_US |
dc.type | article | en_US |
dc.department | İstanbul Atlas Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.authorid | Recep Duranay / 0000-0002-4423-9780 | en_US |
dc.contributor.institutionauthor | Duranay, Recep | |
dc.identifier.volume | 52 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 275 | en_US |
dc.identifier.endpage | 281 | en_US |
dc.relation.journal | Imaging science in dentistry | en_US |
dc.relation.ec | PubMed ID: 36238699 | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |