Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKaya, Emine
dc.contributor.authorGüneç, Hüseyin Gürkan
dc.contributor.authorAydın, Kader Cesur
dc.contributor.authorÜrkmez, Elif Seyda
dc.contributor.authorDuranay, Recep
dc.contributor.authorAteş, Hasan Fehmi
dc.date.accessioned2022-12-06T16:41:41Z
dc.date.available2022-12-06T16:41:41Z
dc.date.issued2022en_US
dc.identifier.citationKaya, E., Gunec, H. G., Aydin, K. C., Urkmez, E. S., Duranay, R., & Ates, H. F. (2022). A deep learning approach to permanent tooth germ detection on pediatric panoramic radiographs. Imaging Science in Dentistry, 52(3), pp. 275-281 https://doi.org/10.5624/isd.20220050 ‌en_US
dc.identifier.issn2233-7822
dc.identifier.uri2233-7830
dc.identifier.uriWOS: 000853675700001
dc.identifier.urihttps://hdl.handle.net/20.500.12900/114
dc.description.abstractPurpose: The aim of this study was to assess the performance of a deep learning system for permanent tooth germ detection on pediatric panoramic radiographs. Materials and Methods: In total, 4518 anonymized panoramic radiographs of children between 5 and 13 years of age were collected. YOLOv4, a convolutional neural network (CNN)-based object detection model, was used to automatically detect permanent tooth germs. Panoramic images of children processed in LabelImg were trained and tested in the YOLOv4 algorithm. True-positive, false-positive, and false-negative rates were calculated. A confusion matrix was used to evaluate the performance of the model. Results: The YOLOv4 model, which detected permanent tooth germs on pediatric panoramic radiographs, provided an average precision value of 94.16% and an F1 value of 0.90, indicating a high level of significance. The average YOLOv4 inference time was 90 ms. Conclusion: The detection of permanent tooth germs on pediatric panoramic X-rays using a deep learning-based approach may facilitate the early diagnosis of tooth deficiency or supernumerary teeth and help dental practitioners find more accurate treatment options while saving time and effort.(Imaging Sci Dent 2022; 52: 275-81)en_US
dc.language.isoengen_US
dc.publisherKorean Academy of Oral and Maxillofacial Radiologyen_US
dc.relation.isversionof10.5624/isd.20220050en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectTooth Germen_US
dc.subjectRadiographen_US
dc.subjectPanoramicen_US
dc.subjectPediatric Dentistryen_US
dc.titleA deep learning approach to permanent tooth germ detection on pediatric panoramic radiographsen_US
dc.typearticleen_US
dc.departmentİstanbul Atlas Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.authoridRecep Duranay / 0000-0002-4423-9780en_US
dc.contributor.institutionauthorDuranay, Recep
dc.identifier.volume52en_US
dc.identifier.issue3en_US
dc.identifier.startpage275en_US
dc.identifier.endpage281en_US
dc.relation.journalImaging science in dentistryen_US
dc.relation.ecPubMed ID: 36238699
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster