Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorNorouzi, Monire
dc.contributor.authorUtlu, Zafer
dc.contributor.authorBendak, Salaheddine
dc.contributor.authorSouri, Alireza
dc.date.accessioned2025-03-22T13:32:02Z
dc.date.available2025-03-22T13:32:02Z
dc.date.issued2025en_US
dc.identifier.citationUtlu, Z., Norouzi, M., Bendak, S., & Souri, A. (2024). Ensemble-based classification algorithm to enhance stability of energy management in IoT-based smart grid networks. International Journal of Embedded Systems, 1(1). https://doi.org/10.1504/ijes.2024.10069119en_US
dc.identifier.issn1741-1068
dc.identifier.urihttps://hdl.handle.net/20.500.12900/608
dc.description.abstractThe exponential increase in electricity consumption makes renewable energy management a necessity within the global warming context. Internet of things (IoT) has a key role in effective data transmission for better managing of energy dissipation in smart grids. Since smart grid network deployment involves huge complexities due to the large data volume being generated, applying artificial intelligent methods is essential to better manage the process. Moreover, reducing energy consumption in a stable smart grid system and fault detection are important in managing electricity congestions, power failure and grid stability problems. This paper aims to present a novel prediction architecture involving ensemble bagging trees and analysis of variance (ANOVA) as a feature selection strategy to improve stability of energy consumption and maximise prediction factors such as accuracy, precision, recall and F1-score in IoT-based smart grids. Experimental and simulation results show that the proposed architecture can decrease training time and improve accuracy of prediction with 99.999% on validation (training) data and 100% on test data than other state-of-the-are machine learning mechanisms.en_US
dc.language.isoengen_US
dc.publisherINDERSCIENCE ENTERPRISES LTDen_US
dc.relation.isversionof10.1504/ijes.2024.10069119en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectInternet of thingsen_US
dc.subjectIoTen_US
dc.subjectSmart grid stabilityen_US
dc.subjectEnergy managementen_US
dc.subjectEnsemble learningen_US
dc.subjectANOVAen_US
dc.subjectAccuracyen_US
dc.titleEnsemble-based classification algorithm to enhance stability of energy management in IoT-based smart grid networksen_US
dc.typearticleen_US
dc.departmentİstanbul Atlas Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümüen_US
dc.contributor.institutionauthorUtlu, Zafer
dc.identifier.volume18en_US
dc.identifier.issue1en_US
dc.relation.journalINTERNATIONAL JOURNAL OF EMBEDDED SYSTEMSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster