Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorHeidari, Arash
dc.contributor.authorNavimipour, Nima Jafari
dc.contributor.authorZeadally, Sherali
dc.contributor.authorChamola, Vinay
dc.date.accessioned2024-12-05T10:08:39Z
dc.date.available2024-12-05T10:08:39Z
dc.date.issued2024en_US
dc.identifier.citationHeidari, A., Navimipour, N. J., Zeadally, S., & Chamola, V. (2024). Everything you wanted to know about ChatGPT: Components, capabilities, applications, and opportunities. Internet Technology Letters. https://doi.org/10.1002/itl2.530en_US
dc.identifier.issn2476-1508
dc.identifier.urihttps://hdl.handle.net/20.500.12900/495
dc.description.abstractConversational Artificial Intelligence (AI) and Natural Language Processing have advanced significantly with the creation of a Generative Pre-trained Transformer (ChatGPT) by OpenAI. ChatGPT uses deep learning techniques like transformer architecture and self-attention mechanisms to replicate human speech and provide coherent and appropriate replies to the situation. The model mainly depends on the patterns discovered in the training data, which might result in incorrect or illogical conclusions. In the context of open-domain chats, we investigate the components, capabilities constraints, and potential applications of ChatGPT along with future opportunities. We begin by describing the components of ChatGPT followed by a definition of chatbots. We present a new taxonomy to classify them. Our taxonomy includes rule-based chatbots, retrieval-based chatbots, generative chatbots, and hybrid chatbots. Next, we describe the capabilities and constraints of ChatGPT. Finally, we present potential applications of ChatGPT and future research opportunities. The results showed that ChatGPT, a transformer-based chatbot model, utilizes encoders to produce coherent responses.en_US
dc.language.isoengen_US
dc.publisherJOHN WILEY & SONS LTDen_US
dc.relation.isversionof10.1002/itl2.530en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChatGPTen_US
dc.subjectConversational artificial intelligenceen_US
dc.subjectDeep learningen_US
dc.subjectGenerative pre-trained transformeren_US
dc.subjectLarge language modelsen_US
dc.subjectNatural language processingen_US
dc.subjectSelf-attention mechanismsen_US
dc.titleEverything you wanted to know about ChatGPT: Components, capabilities, applications, and opportunitiesen_US
dc.typeletteren_US
dc.departmentİstanbul Atlas Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.authoridhttps://orcid.org/0000-0003-4279-8551en_US
dc.contributor.institutionauthorHeidari, Arash
dc.relation.journalINTERNET TECHNOLOGY LETTERSen_US
dc.relation.publicationcategoryDiğeren_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster