Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAjlouni, Naim Mahmood Musleh
dc.contributor.authorAytaç, Utku Can
dc.contributor.authorGüneş, Ali
dc.date.accessioned2022-11-11T12:33:03Z
dc.date.available2022-11-11T12:33:03Z
dc.date.issued2022en_US
dc.identifier.citationAytaç, U. C., Güneş, A., & Ajlouni, N. (16.03.2022). A novel adaptive momentum method for medical image classification using convolutional neural network. BMC Medical Imaging, 22(1). https://doi.org/10.1186/s12880-022-00755-z ‌en_US
dc.identifier.issn1471-2342
dc.identifier.uriWOS:000762749600001
dc.identifier.uriPubMed ID: 35232390
dc.identifier.urihttps://hdl.handle.net/20.500.12900/100
dc.description.abstractBackground: AI for medical diagnosis has made a tremendous impact by applying convolutional neural networks (CNNs) to medical image classifcation and momentum plays an essential role in stochastic gradient optimization algorithms for accelerating or improving training convolutional neural networks. In traditional optimizers in CNNs, the momentum is usually weighted by a constant. However, tuning hyperparameters for momentum can be computationally complex. In this paper, we propose a novel adaptive momentum for fast and stable convergence. Method: Applying adaptive momentum rate proposes increasing or decreasing based on every epoch’s error changes, and it eliminates the need for momentum hyperparameter optimization. We tested the proposed method with 3 diferent datasets: REMBRANDT Brain Cancer, NIH Chest X-ray, COVID-19 CT scan. We compared the performance of a novel adaptive momentum optimizer with Stochastic gradient descent (SGD) and other adaptive optimizers such as Adam and RMSprop. Results: Proposed method improves SGD performance by reducing classifcation error from 6.12 to 5.44%, and it achieved the lowest error and highest accuracy compared with other optimizers. To strengthen the outcomes of this study, we investigated the performance comparison for the state-of-the-art CNN architectures with adaptive momentum. The results shows that the proposed method achieved the highest with 95% compared to state-of-the-art CNN architectures while using the same dataset. The proposed method improves convergence performance by reducing classifcation error and achieves high accuracy compared with other optimizers.en_US
dc.language.isoengen_US
dc.publisherBMC Medical Imagingen_US
dc.relation.isversionof10.1186/s12880-022-00755-zen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAdaptive momentum methodsen_US
dc.subjectNonconvex optimizationen_US
dc.subjectBackpropagation algorithmen_US
dc.subjectConvolutional neural networksen_US
dc.subjectMedical image classifcationen_US
dc.titleA novel adaptive momentum method for medical image classification using convolutional neural networken_US
dc.typearticleen_US
dc.departmentİstanbul Atlas Üniversitesien_US
dc.authoridNaim Mahmood Musleh Ajlouni / 0000-0002-5116-8933en_US
dc.contributor.institutionauthorAjlouni, Naim Mahmood Musleh
dc.identifier.volume22en_US
dc.identifier.issue1en_US
dc.identifier.startpage1en_US
dc.identifier.endpage12en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster