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Abstract. We define the neighbor graph of binary self-orthogonal codes,

where two codes are connected by an edge if they can be reached by the neigh-
bor construction. We show that this graph consists of two connected, regular

subgraphs consisting of self-orthogonal codes that contain the all-one vector 1

and self-orthogonal codes that do not contain the all-one vector 1. We count
the number of vertices and edges in each and give the degree of the vertices.

1. Introduction. Two of the most important and widely studied classes of codes
are self-dual codes and linear complementary dual codes. That is, codes that are
equal to their orthogonal and codes that have a minimal intersection with their or-
thogonal. This inspired the question raised first formally in [5] which is to classify
codes that have a k dimensional intersection with their orthogonal. Since the in-
tersection, called the hull, is a self-orthogonal code, it becomes vital to understand
all self-orthogonal codes, their relationship to other self-orthogonal codes, and their
relationship to codes for which they are the hull.

The principal technique we use is to study these codes using simple graphs.
Specifically, we use the distance in an associated graph to define the distance be-
tween self-orthogonal codes.

The neighbor construction was first given for self-dual codes and was done very
early in the study of self-dual codes. Specifically, neighbor codes in that setting
were codes that shared a subcode of co-dimension 1. The construction was used to
find new self-dual codes from known self-dual codes. Moreover, it could be used to
study various properties of the codes by examining these properties in neighboring
codes. A summary of the techniques and uses of the neighbor in the classical case
can be found in [7].

In this paper, we shall study self-orthogonal codes and their relationship to each
other. We generalize results given for self-dual codes in [6].

In Section 2, we give the necessary notations and definitions for codes and graphs.
We define the hull of a code, the shadow of a self-orthogonal code, and give foun-
dational results about both of these codes. In Section 3, we count the number of
self-orthogonal codes splitting the number into self-orthogonal codes that contain
the all-one vector 1 and those that do not contain the all-one vector 1, and we
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count the number of codes which have a given self-orthogonal code as their hull. In
Section 4, we define the neighbor graph and determine the parameters of this graph.
We show that the graph splits into two connected graphs, the first corresponds to
codes containing the all-one vector 1 and the second corresponds to codes that do
not contain the all-one vector 1. We show that they are both regular connected
subgraphs.

2. Definitions and notations. In this section, we set the standard definitions
and notations for codes and for simple graphs. Throughout this paper, we restrict
ourselves to binary codes.

2.1. Binary codes. A binary code of length n is a subset of Fn
2 . When the code is

a vector subspace of Fn
2 , we say that the code is linear. The Hamming weight of a

vector is the number of non-zero coordinates in a vector and the minimum weight
of a code is the smallest non-zero weight of any vector in the code. We denote
the Hamming weight of a vector by wtH(v). A code in Fn

2 , with dimension k, and
minimum distance d, is denoted as an [n, k, d] code. We say that two codes C and
C ′ are equivalent, written C ∼ C ′, if and only if there exists a permutation σ acting
on the coordinates of C such that σ(C) = C ′.

We attach to the ambient space Fn
2 the standard inner-product, namely [v,w] =∑

viwi. The dual of the code C, denoted by C⊥, is defined as C⊥ = {v | [v,w] =
0,∀w ∈ C}. The code C⊥ is linear even if C is not, and if C has dimension k then
C⊥ has dimension n− k.

In this paper, the codes that we are interested in are self-orthogonal codes which
we now define.

Definition 2.1. A code C ⊆ Fn
2 is a self-orthogonal code of length n if C ⊆ C⊥.

A self-orthogonal code C with the property that there is no self-orthogonal code
D with C ⊆ D is said to be maximal self-orthogonal. A self-dual code satisfies
C = C⊥.

We note that a maximal binary self-orthogonal code of odd length n has dimen-
sion n−1

2 and a maximal binary self-orthogonal code of even length n has dimension
n
2 . In the case when n is even, a maximal self-orthogonal code is, in fact, self-dual,
but in the odd case it is not self-dual.

Definition 2.2. For a linear code C, define the Hull of a code C as Hull(C) =
C ∩ C⊥.

It is immediate that Hull(C) is a linear code and that Hull(C) ⊆ Hull(C)⊥,
that is Hull(C) is a self-orthogonal code. If C is self-orthogonal then Hull(C) = C.
If C = C⊥, that is C is self-dual, we have that Hull(C) = C. If Hull(C) = {0} then
the code C is said to be Linear Complementary Dual (LCD) and has the property
that C ⊕C⊥ = Fn

2 . The hull first appeared in [1] where the hull was used to study
codes arising from the incidence matrices of finite affine and projective planes. It
was also used to study codes from nets in [4] and later was used in general for codes
of designs in [2].

If Hull(C) = C and dim(C) = n
2 then the code C is self-dual. If Hull(C) = {0},

then the code is said to be a Linear Complementary Dual (LCD) code.

Definition 2.3. A code of length n, size M, and minimum Hamming distance d is
said to be optimal if it has the largest d of any other codes with length n and size
M.
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In general, the main question of coding theory is finding optimal codes for a given
set of parameters.

The motivating question for this work is to aid in the classification of codes whose
hull has dimension k. Fundamentally, we seek to answer the following.

Question 2.1. What are the parameters of the optimal code C where dim(Hull(C))
= k, for a given integer k?

A great deal of work has been done when k = n
2 and more recently when k = 0.

However, the general question is largely wide open. Specifically, self-dual codes and
LCD codes are widely studied classes of codes, but a classification of codes whose
hull has dimension k ̸= 0, n

2 is largely untouched at his point.

2.2. Subcodes and shadows. In this section, we recall the notion of a shadow
code given in [3] for self-orthogonal codes.

A codeword is said to be doubly-even if its weight is congruent to 0 (mod 4). A
self-orthogonal code with the property that all weights are doubly-even is said to
be a doubly-even code. The weight enumerator of a code is given by:

WC(x, y) =
∑

Aix
n−iyi

where Ai is the number of vectors of weight i.

Definition 2.4. If C is a self-orthogonal code, define the code C0 to be C0 = {v ∈
C | wt(v) ≡ 0 (mod 4)}.

Theorem 2.5. Let C be a self-orthogonal code of dimension k. Then C0 is a linear
subcode of C with co-dimension 1, that is a subcode of dimension k − 1.

Proof. We have wtH(v +w) = wtH(v) + wtH(w)− 2|v ∧w|, where |v ∧w| is the
number of coordinates where vi = wi = 1. If [v,w] = 0, this implies that |v∧w| ≡ 0
(mod 2).

Let v and w be elements of C0, that is they are two doubly-even vectors that
are orthogonal. Then wtH(v) and wtH(w) are both 0 (mod 4). Since |v ∧w| ≡ 0
(mod 2), we have 2|v ∧w| ≡ 0 (mod 4). Therefore, wtH(v +w) ≡ 0 (mod 4) and
v,w ∈ C0. This gives that C0 is linear.

Next, if u is any singly-even vector in C, we have ⟨C0,u⟩ = C. This gives that
C0 has co-dimension 1 in C.

We note that it is vital that the code C be self-orthogonal for the previous
theorem to hold. For example, consider the code E5 consisting of all even weight
vectors in F5

2. Then (11110) and (01111) are both doubly-even vectors in that code
but their sum (10001) is not a doubly-even vector. Moreover, there are 6 doubly-
even vectors in E5 and 6 is not a power of 2. As such, while you can generate a
linear code containing all even vectors in the ambient space, it is not necessarily
true for doubly-even vectors. Namely, the code containing all doubly-even vectors
is not linear in general.

Definition 2.6. The shadow of a self-orthogonal code C is S = C⊥
0 \ C⊥.

The following was proven in [3].

Theorem 2.7. Let C be a self-orthogonal code with weight enumerator WC(x, y)
and let i be the complex root of −1.

• The weight enumerator of C0 is WC0(x, y) =
1
2 (WC(x, y) +WC(x, iy)).
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• The shadow S is a non-linear code with |S| = 2n−k.
• The weight enumerator of the shadow is

WS(x, y) =
1

2n−k
WC0

(x+ y, x− y)

=WC

(
(1 + i)x+ (1− i)y

2
,
(1− i)x+ (1 + i)y

2

)
.

With these results in mind, we can make the following definition.

Definition 2.8. Let C be a binary linear code. Then Hull(C)0 is the subcode
of doubly-even vectors in Hull(C). The non-linear code Shad(C) = Hull(C)⊥0 \
Hull(C)⊥.

This means that given any binary code there is a self-orthogonal code, and
doubly-even code, and a non-linear code attached to it.

Theorem 2.9. Let C and C ′ be two binary codes that are equivalent. Then we
have the following.

• The codes Hull(C) and Hull(C ′) are equivalent.
• The codes Hull(C)0 and Hull(C ′)0 are equivalent.
• The codes Shad(C) and Shad(C ′) are equivalent.

Proof. If C ∼ C ′ then it is immediate that C⊥ ∼ (C ′)⊥ since if σ(C) = C ′ then
σ(C⊥) = (C ′)⊥. This gives thatHull(C) andHull(C ′) and the other two statements
follow immediately from that result.

For LCD codes C, we have Hull(C)0 = Hull(C) = {0} and for self-dual codes
C we have Hull(C)0 = C0.

Corollary 2.10. Let C and C ′ be two codes. If WHull(C)(x, y) ̸= WHull(C′)(x, y),
then C and C ′ are not equivalent.

Proof. Follows from Theorem 2.9.

2.3. Simple graphs. There are various different notions of a graph. In this setting,
we shall describe what are usually known as simple graphs. That is, there are no
multiple edges, no edges from a vertex to itself, and the edges are not directed.
Specifically, we have the following definition.

Definition 2.11. A graph G = (V,E) where V is the set of vertices and E is the
set of edges of the form {a, b} ∈ E, where a ̸= b.

We say that a and b are connected as edges if and only if {a, b} ∈ E. We note
also that {a, b} is a set and not an ordered pair, meaning it is not a directed graph
and also that E is a set and not a multi-set so there are no multiple edges.

The degree of a vertex is the number of edges adjacent to it and a graph is said
to be regular if the degree of every vertex is the same. A path in a graph G is a
set of vertices v1, v2, . . . , vr where {vi, vi+1} ∈ E. In this case, we say that it is a
path of length r − 1. We say that a graph is connected if, for all vertices v, w ∈ V ,
there is a path from v to w. If a graph G is connected and regular of degree d, then

|E| = |V |d
2 .
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3. Counting self-orthogonal codes. Let 1 denote the all-one vector of length n.
We note that a vector is self-orthogonal if and only if v has [v,v] = 0 if and only if
[1,v] = 0. Note also that [1,1] = 0 if and only if n is even.

Lemma 3.1. Let n be odd. The number of self-orthogonal codes of dimension k,
with k < n

2 is

On,k =
(2n−1 − 1)(2n−2 − 2)(2n−3 − 22) · · · (2n−k − 2k−1)

(2k − 1)(2k − 2)(2k − 22) · · · (2k − 2k−1)

=

∏k
i=1(2

n−i − 2i−1)∏k
i=1(2

k − 2i−1)
.

Proof. All binary self-orthogonal vectors are in ⟨1⟩⊥ which has cardinality 2n−1.
The number of ways of choosing a non-zero vector from this set is 2n−1−1. Having
chosen vector v we next have to choose a vector from ⟨v,1⟩⊥ that is not in ⟨v⟩. There
are (2n−2 − 2) ways of doing that. Having chosen v1,v2, . . . ,vs we must choose
the next vector from ⟨1,v1,v2, . . . ,vs⟩⊥ that is not in ⟨v1,v2, . . . ,vs⟩. There are
(2n−1−1)(2n−2−2) . . . (2n−1−s−2s) ways of doing this. This gives the numerator.
The denominator counts the number of ways of finding a basis in a k dimensional
space.

Notice in the above formula, that is n = 2k − 1, we have that 2n−k − 2k−1 =
2k−1 − 2k−1 = 0. That is, there are no self-orthogonal codes with dimension larger
than ⌊n

2 ⌋ when n is odd as is well known.
We split the counting of self-orthogonal codes into two parts consisting of codes

containing 1 and codes that do not contain 1. This split will be essential later as
both counts are important for future results.

Lemma 3.2. Let n be even. The number of self-orthogonal codes of dimension k,
with k < n

2 , that do not contain 1 is

Hn,k =
(2n−1 − 2)(2n−2 − 22)(2n−3 − 23) · · · (2n−k − 2k)

(2k − 1)(2k − 2)(2k − 22) · · · (2k − 2k−1)

=

∏k
i=1(2

n−i − 2i)∏k
i=1(2

k − 2i−1)
.

Proof. All binary self-orthogonal vectors are in ⟨1⟩⊥ which has cardinality 2n−1.
The number of ways of choosing a non-zero vector which is not the all-one vector
from this set is 2n−1 − 2. Having chosen vector v we next have to choose a vector
from ⟨v,1⟩⊥ that is not in ⟨v,1⟩. This is, because we cannot choose the all-one
vector. There are (2n−2 − 22) ways of doing that. Having chosen v1,v2, . . . ,vs we
must choose the next vector from ⟨1,v1,v2, . . . ,vs⟩⊥ that is not in ⟨v1,v2, . . . ,vs⟩.
There are (2n−1 − 2)(2n−2 − 22) · · · (2n−s+1 − 2s+1) ways of doing this. This gives
the numerator. The denominator counts the number of ways of finding a basis in a
k dimensional space.

We note that Hn,0 = 1 which is the code generated by the all-zero vector.

Lemma 3.3. Let n be even. The number of self-orthogonal codes of dimension k,

with k ≤ n
2 , that do contain 1 is

Hn,k−1

2k−1 .

Proof. A self-orthogonal code that contains the all-one vector is a self-orthogonal
code D of dimension k − 1 adjoined with the all-one vector. That is C = ⟨D,1⟩.



6 STEVEN T. DOUGHERTY AND ESENGÜL SALTÜRK

For each vector v in the dimension k−1 code C, we get the same code by adjoining
1 + v. Therefore, 2k−1 vectors given the same code ⟨C,1⟩. This is why we divide
by 2k−1.

Theorem 3.4. Let n be even. The number of self-orthogonal codes of dimension k
is

Hn,k +
Hn,k−1

2k−1
.

Proof. We add the number of self-orthogonal codes without the all-one vector to-
gether with the self-orthogonal codes that have the all-one vector.

Note that for self-dual codes, that is self-orthogonal codes with k = n
2 , we have

Hn,k = 0, since 2n−k − 2k = 0 as n − k = k in this case. This coincides with the
fact that all self-dual codes must contain the all-one vector.

Theorem 3.5. If n is odd, the number of self-orthogonal codes of dimension k is:

On,k =
(2n−1 − 1)(2n−3 − 1) · · · (2n−(2k−1) − 1)

(2k − 1)(2k−1 − 1) · · · (2− 1)
=

k−1∏
i=0

(2n−1−2i − 1)

(2k−i − 1)
. (1)

If n is even, the number of self-orthogonal codes of dimension k that do not contain
the vector 1 is:

Hn,k =
2k(2n−2 − 1)(2n−4 − 1) · · · (2n−2k − 1)

(2k − 1)(2k−1 − 1) · · · (2− 1)
= 2k

k−1∏
i=0

(2n−2(i+1) − 1)

(2k−i − 1)
. (2)

If n is even, the number of self-orthogonal codes of dimension k is:

En,k =

(
2k

k−1∏
i=0

(2n−2(i+1) − 1)

(2k−i − 1)

)
+

(
k−2∏
i=0

(2n−2(i+1) − 1)

(2k−i−1 − 1)

)
. (3)

Proof. For On,k, take the value given in Lemma 3.1 and factor the powers of 2 out
of the top and the bottom to get the result.

For Hn,k, take the value given in Lemma 3.2 and factor the powers of 2 out of
the top and the bottom which leaves 2k in the numerator to get the result.

For En,k, use the result in Equation 2 and compute Hn,k +
Hn,k−1

2k−1 .

Table 1 gives the number of binary self-orthogonal codes for some lengths. Note
thatHn,k is the number of self-orthogonal codes of length n and dimension k without
the all-one vector, Hn,k−1/2

k−1 is the number of self-orthogonal codes of length
n and dimension k with the all-one vector and En,k is the total number of self-
orthogonal codes of length n and dimension k, where n is even. Note also that
On,k is the total number of self-orthogonal codes of odd length. We have that
Hn,k−1/2

k−1 gives the number of self-dual codes of even length n, when k = n/2.
Moreover, it can be seen from the table and from the formulas given by (1) and (3)
that the number of binary self-dual codes of length n and dimension k is equal to
the number of binary maximal self-orthogonal codes of length n− 1 and dimension
k−1, where k = n

2 . These numbers are bolded in the table and are given as follows:
1, 3, 15, 135, 2295, 75735, . . . This is a special number sequence given in OEIS by
reference number A028362, in [9]. This sequence also gives the number of totally
isotropic spaces of index n in symplectic geometry of even dimension n.
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Table 1. The number of binary self-orthogonal codes length n and
dimension k

n k On,k n k Hn,k
Hn,k−1

2k−1 En,k

1 0 1 2 0 1 1 2
3 0 1 2 1 1
3 1 3 4 0 1 1 2
5 0 1 4 1 6 1 7
5 1 15 4 2 3
5 2 15 6 0 1 1 2
7 0 1 6 1 30 1 31
7 1 63 6 2 60 15 75
7 2 315 6 3 15
7 3 135 8 0 1 1 2
9 0 1 8 1 126 1 127
9 1 255 8 2 1260 63 1323
9 2 5355 8 3 1080 315 1395
9 3 11475 8 4 135
9 4 2295 10 0 1 1 2
11 0 1 10 1 510 1 511
11 1 1023 10 2 21420 255 21675
11 2 86955 10 3 91800 5355 97155
11 3 782595 10 4 36720 11475 48195
11 4 782595 10 5 2295
11 5 75735 12 0 1 1 2
13 0 1 12 1 2046 1 2047
13 1 4095 12 2 347820 1023 348843
13 2 1396395 12 3 6260760 86955 63477153
13 3 50868675 12 4 12521520 782595 13304115
13 4 213648435 12 5 2423520 782595 3206115
13 5 103378275 12 6 75735
13 6 4922775 12

3.1. Codes and hulls. Let Tn,k be On,k if n is odd and En,k if n is even. That is,
Tn,k is the number of self-orthogonal codes with dimension k and length n.

Sendrier proved the following result in [8].

Lemma 3.6. Let j ≤ n
2 and let k ≤ j. The number of binary linear codes of length

n and dimension j where the dimension of the hull is k is

j∑
i=k

[
n− 2i
j − i

]
2

[
i
k

]
2

(−1)i−k2(
i−k
2 )Tn,i.

Theorem 3.7. Let C be a self-orthogonal code of dimension k.

1. Let n be odd. Then the number of binary codes D with Hull(D) = C is:(
2

On,k

) ⌊n
2 ⌋∑

j=k

(
j∑

i=k

[
n− 2i
j − i

]
2

[
i
k

]
2

(−1)i−k2(
i−k
2 )On,i

)
. (4)

2. Let n be even. Then the number of binary codes D with Hull(D) = C is:(
1

En,k

)2

n
2 −1∑
j=k

(
j∑

i=k

[
n− 2i
j − i

]
2

[
i
k

]
2

(−1)i−k2(
i−k
2 )En,i

)

+

n
2∑

i=k

[
n− 2i
n
2 − i

]
2

[
i
k

]
2

(−1)i−k2(
i−k
2 )En,i

 .

Proof. For n even or odd we have the following. Since

j∑
i=k

[
n− 2i
j − i

]
2

[
i
k

]
2

(−1)i−k2(
i−k
2 )Tn,i
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gives the number of codes of dimension j ≤ ⌊n
2 ⌋ that have a hull with dimension

k = dim(C), the number of codes D with a hull of dimension ⌊n
2 ⌋ is

⌊n
2 ⌋∑

j=k

(
j∑

i=k

[
n− 2i
j − i

]
2

[
i
k

]
2

(−1)i−k2(
i−k
2 )Tn,i

)
.

If C = Hull(D) then Hull(D⊥) = C as well. Either D or D⊥ has dimension less
than or equal to ⌊n

2 ⌋. This gives that the number of codes with a hull of dimension
k is

2

⌊n
2 ⌋∑

j=k

(
j∑

i=k

[
n− 2i
j − i

]
2

[
i
k

]
2

(−1)i−k2(
i−k
2 )Tn,i

)
.

Then there are Tn,k self-orthogonal code of dimension k, each of these has the same
number of codesD for which it is the hull and this gives the Tn,k in the denominator.

For the case when n is even, if dim(C) = n
2 , then its orthogonal must also have

dimension n
2 so we do not need to multiply by 2. Then we have the result.

4. Neighbor graph. In this section, we shall investigate the neighbor of a self-
orthogonal code. We begin with the definition of a neighbor.

Definition 4.1. Let C be a self-orthogonal code of dimension k and let v be a
self-orthogonal vector not in C⊥. Then N(C,v) = ⟨{w ∈ C | [w,v] = 0},v⟩.

The significance of this definition is that given a self-orthogonal code C, we can
produce another self-orthogonal code given any self-orthogonal vector not in the
code C⊥. We describe this process in the next theorem.

Theorem 4.2. Let C be a self-orthogonal code of dimension k and let v be a self-
orthogonal vector not in C⊥. Then N(C,v) is a self-orthogonal code of dimension
k.

Proof. If C is a linear self-orthogonal code then {w ∈ C | [w,v] = 0} is a linear code
of co-dimension 1 in C. Then, taking the code generated by this linear code and a
vector v that is not in the code gives a linear code with dimension k. Therefore,
N(C,v) is a linear code with dimension k.

We have that [v,v] = 0 and [v,w] = 0 for all w ∈ C0. This gives that N(C,v)
is a self-orthogonal code.

It is vital that v not be in C⊥, since if it were then {w ∈ C | [w,v] = 0} would
be the code C and then N(C,v) would be dimension k + 1 and not k.

The code we have constructed N(C,v) is called a neighbor of the code C. We
note that if v ̸∈ C then N(C,v) ̸= C.

Each code has numerous neighbors and simply because v1 ̸= v2 does not imply
that N(C,v1) ̸= N(C,v2). We shall describe the situation in the following lemma
which generalizes a lemma in [6].

Lemma 4.3. Let C be a binary self-orthogonal code and let v1 and v2 be self-
orthogonal vectors that are not in the code C. We have N(C,v1) = N(C,v2) if
and only if there exists a vector w ∈ C with the properties that [w,v1] = 0 and
v2 = w + v1.

Proof. Assume there exists a vector w ∈ C with [w,v1] = 0 and v2 = w + v1.
Let C0 be the subcode of C that is {w ∈ C | [w,v1] = 0}. If u ∈ C0 we have
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[u,v2] = [u,w + v1] = 0 + 0 = 0. Thus, {w ∈ C | [w,v2] = 0} = C0. Then
C0+v2 = C0+w+w1 = (C0+w)+v1 = C0+v1 giving that N(C,v1) = N(C,v2).

Assume N(C,v1) = N(C,v2), then v2 ∈ C0 + v1 which gives that there exists a
vector w ∈ C with [w,v1] = 0 and v2 = w + v1.

The following is the motivating definition for the work.

Definition 4.4. Let n and k be positive natural numbers with k ≤ n
2 . Let Γn,k =

(V,E), where the set of vertices V is the set of all binary self-orthogonal codes of
length n and dimension k, and two vertices are connected by an edge in E if and
only if they are neighbors.

We want to justify that the graph is a simple graph and not a directed graph.
We show this in the next theorem.

Theorem 4.5. Let C be a binary self-orthogonal code of dimension k. If C ′ =
N(C,v) for some vector v, then C = N(C ′,w) for some vector w.

Proof. Let C be a binary self-orthogonal code and v a self-orthogonal vector, and
let C0 = {c ∈ C | [c,v] = 0}. This gives that there is a vector w with ⟨C0,w⟩ = C.
We note that the vector w is orthogonal to every vector in C0.

Next, consider the code N(C ′,w). The code {c ∈ C | [c,w] = 0} is necessarily
C0 since this code must be co-dimension 1 in C ′ and w is orthogonal to every vector
in C0. Then N(C ′,w) = ⟨C0,w⟩ = C and we have the result.

Unlike the self-dual code case, simply because two codes share a subcode of co-
dimension 1, they are not necessarily neighbors. For example consider the code of
dimension 1, C = ⟨(111111)⟩ and the code C ′ = ⟨(111100)⟩. They share a subcode
of co-dimension 1, namely H = {(000000)}. However, C⊥ consists of every self-
orthogonal vector in F6

2. Hence there is no self-orthogonal vector to make C and C ′

neighbors. That is {w | w ∈ C, [w, (111100)] = 0} is the code C itself. Therefore,
N(C, (111100)) is a code of dimension 2 and not dimension 1.

Instead, we have the following result.

Theorem 4.6. Two self-orthogonal codes C and D of dimension k and length n
are connected by an edge in Γn,k if they share a subcode E of dimension k−1 where
C = ⟨E,v⟩, D = ⟨E,w⟩, and [v,w] ̸= 0.

Proof. If C = ⟨E,v⟩, D = ⟨E,w⟩, and v ̸∈ D⊥, then N(D,v) = C since the
subcode of D that is orthogonal to v is E and is dimension k − 1. Equivalently,
N(C,w) = D.

If [v,w] = 0, then v ∈ D⊥ and N(D,v) has dimension k + 1.

Corollary 4.7. Let C and D be maximal self-orthogonal codes, that is k = ⌊n
2 ⌋.

Then if C and D share a subcode of co-dimension 1, then they are connected by an
edge in Γn,k.

Proof. Assume C = ⟨E,v⟩ and D = ⟨E,w⟩ and C and D are both maximal self-
orthogonal. Then if [v,w] = 0, this would imply that ⟨C,w⟩ is a self-orthogonal
code with dimension ⌊n

2 ⌋+1 which is impossible since self-orthogonal codes satisfy
k ≤ ⌊n

2 ⌋. Therefore, [v,w] ̸= 0 in this case and so Theorem 4.6 applies.

If k = 0, then there is only one self-orthogonal code, namely, the code {0}.
Therefore, Γn,k consists of a single vertex and no edges. If n = 2, and k = 1, then
Γ2,1 consists of a single vertex corresponding to {(00), (11)}.
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Theorem 4.8. Let k = 1. If n is odd, then Γn,k has 2n−1 − 1 vertices and the
graph is regular with degree 2n−2. If n is even, then Γn,k has 2n−1 − 1 vertices and
the vertices not of the form {0,1} has degree 2n−2 and the vertex corresponding to
{0,1} is an isolated point.

Proof. Lemma 3.1 gives the number of vertices in the odd case. Each self-orthogonal
code is of the form {0,v} where v is a self-orthogonal vector. Then {0,v} and
{0,w} are connected if and only if [v,w] ̸= 0 by Theorem 4.6. There are 2n−2 − 1
non-zero self-orthogonal vectors in ⟨v,1⟩⊥, that is self-orthogonal vectors that are
orthogonal to v. Therefore, the code {0,v} is connected to 2n−1− 1− (2n−2− 1) =
2n−2 vertices.

In the even case, Theorem 3.5 gives the number of vertices. For the code {0,1},
every self-orthogonal vector is in its orthogonal so it is not connected to any other
vertex.

Example 1. For n = 3, the graph Γ3,1 is the following:

• •

•

⟨(110)⟩ ⟨(101)⟩

⟨(011)⟩

.........................................................................................................................................................................................................................................................................................
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
...................................................................................................................................................................................................

Here there are 3 vertices and the degree of each vertex is 2.

Example 2. For n = 4, the graph Γ4,1 is the following:

•

•

•

•

•

•

•

⟨(1100)⟩

⟨(0110)⟩

⟨(0101)⟩

⟨(0011)⟩

⟨(1001)⟩

⟨(1010)⟩

⟨(1111)⟩

................................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
.........

.................................................................................................................................................................................................................................................................................................................................................................................................................................................................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
.........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
......................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................

Here there are 7 vertices and the degree of each vertex is 4 in the connected part
corresponding to codes that do not contain the all-one vector. The other part of
the graph which corresponds to codes that contain the all-one vector consists of a
unique isolated vertex. Note that this is not a regular graph but both connected
subgraphs are regular.

Definition 4.9. Let n and k be positive natural numbers with k ≤ n
2 , where n is

even and n ≥ 4. Let Θn,k = (V,E), where the set of vertices V is the set of all binary
self-orthogonal codes that contain the all-one vector of length n and dimension k,
and two vertices are connected by an edge in E if and only if they are neighbors.
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We see that this graph is only defined for even n since the all-one vector is

self-orthogonal if and only if n is even. The graph Θn,k has
Hn,k−1

2k−1 vertices by
Lemma 3.3.

Example 3. If k = 1, then Θn,1 has a single vertex corresponding to the code
{0,1}.

Example 4. Let n = 6 and k = 2. Then the number of vertices in Θ6,2 is
H6,1

21 =
15. Consider the code C = {000000, 111111, 110000, 001111}. Then this code is
connected to codes generated by the set {111111,v} where v is self-orthogonal but
not orthogonal to 110000. There are

(
4
1

)
= 4 vectors that have weight 2 that begin

with 10 and
(
4
1

)
= 4 that have weight 2 that begin with 01. There are

(
4
3

)
= 4

vectors that have weight 4 and begin with 10 there are
(
4
3

)
= 4 vectors that have

weight 4 and begin with 01. Each of these codes are counted twice, once for v and
once for 1 + v. Therefore, there are 8 codes that this code is connected to by an
edge.

The code is not connected to a code generated by the set {111111,v} if v has
weight 2 whose support does not contain the first two coordinates which gives(
4
2

)
= 6 codes or a weight 4 vectors whose support does contain the first two

coordinates. This gives
(
4
2

)
= 6 codes. Then each code is counted twice so there

are 6 codes that are not connected to the code C.
Then there is the code C, the 8 codes that it is connected to, and the 6 codes

that it is not connected to, giving 1 + 8 + 6 = 15 as predicated.

We want to examine the graph theoretic properties of the neighbor graph of
self-orthogonal codes.

Theorem 4.10. The graph Γn,⌊n
2 ⌋ is connected.

Proof. Assume C1, C2 are maximal self-orthogonal codes. If v ∈ C2, then we
know that v ̸∈ C1, then v /∈ C⊥

1 since if it were ⟨C1,v⟩ would be self-orthogonal
which is a contradiction. Therefore, if v ∈ C1 we have N(C1,v) = C1. Let C2 =
⟨v1,v2, . . . ,vk⟩. Let D1 = N(C1,v1) and Ds = N(Ds−1,vs). Then C1, D1, D2, . . . ,
Dk is a path from C1 to C2 by Corollary 4.7.

Theorem 4.11. The maximum distance between any two vertices in Γn,⌊n
2 ⌋ is k.

Proof. Let C be a self-orthogonal code and let D = ⟨v1,v2, . . . ,vk⟩ be another
self-orthogonal code. Then

D = N(· · · (N(N(N(C,v1),v2),v3) · · · ),vk).

Therefore, the maximum distance is k.

We note that for self-dual codes the maximum distance is n
2 − 1 since any two

self-dual codes must share the one dimensional code generated by the all-one vec-
tor. However, it is easy to see that there exist self-orthogonal codes that are not
self-dual that do not even share a 1 dimensional subcode. For example, con-
sider the code generated by (11000 · · · 00, 001100 · · · ) and the code generated by
(00 · · · 0011, 00 · · · 1100). Similar things can be done for any dimension k as long as
k < n

2 .
The set of doubly-even codes of dimension k is a subset of the set of k dimensional

self-orthogonal codes. This is because if C is a linear code consisting of doubly-even
vectors, then if v,w ∈ C, then v+w ∈ C and therefore wtH(v+w) ≡ 0 (mod 4).
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Then wtH(v +w) = wtH(v) + wtH(w) − 2|v ∧w| giving that |v ∧w| is even and
so [v,w] = 0.

Theorem 4.12. Let C be a self-orthogonal code. Then N(C,v) is a doubly-even
code if and only if v ∈ C⊥

0 \ C⊥ and wtH(v) ≡ 0 (mod 4).

Proof. Let C be a Type I code of length n. If N(C,v) is a Type II code, then
two things must occur. First v must be a doubly-even vector since if v is a singly-
even vector then v ∈ N(C,v) so N(C,v) must be singly-even. The second is that
C0 = {w | [v,w] = 0} must consist of only doubly-even vectors. That is, we need
C0 = D0, where D0 is the subcode of doubly-even vectors.

It is immediate that C0 = D0 if and only if v ∈ S, where S is the shadow of the
code.

Definition 4.13. Let ∆k
n = (V,E) be the subgraph of Γn,k, where V is the set of

all doubly-even codes of length n, and two vertices are connected by an edge in E
if and only if they are neighbors.

The difficulty in determining all of the parameters of ∆n,k is that there is no
formula for the number of doubly-even codes of dimension k. If we were to follow
the techniques used to get the counts in Section 3, we would need to know the
following. Let Dn be the set of all doubly-even vectors in Fn

2 and let Dn = |Dn|.
The question is, given a doubly-even vector what the size of the set Dn ∩ ⟨v⟩⊥ is.
However, this is not the same for all vectors v even for a given n. For example, if
n = 8 and v = 1 then there are D8 = 72 doubly even vectors in Dn ∩ ⟨v⟩⊥ since
every doubly-even vector is in ⟨1⟩⊥ for this n. However, choosing v = (11110000),
not every doubly-even vector is orthogonal to this vector. For example, (10001110)
is not. Hence, the size of this intersection is not the same and therefore any attempt
to count the number of doubly-even codes of dimension k and length n using this
technique will not work. Moreover, this formula is not in the literature. The size of
this intersection would also be needed to determine the degree of every vertex.

Theorem 4.14. The graph ∆n,k is a subgraph of Γn,k.

Proof. This is a subgraph since the set of doubly-even codes is a subset of the set
of self-orthogonal codes and two codes are connected by an edge in ∆n,k if and only
if they are connected in Γn,k.

We note that ∆n,k is not a subgraph of Θn,k since not all doubly-even codes
contain 1.

Theorem 4.15. The number of vertices in ∆n,1 is

⌊n
4 ⌋∑

i=1

(
n

4i

)
.

Proof. Each dimension 1 doubly-even code consists of the zero vector and a vector
with doubly-even weight. This gives the result.

Example 5. For n = 1, 2, 3 the graph ∆n,k is empty. The graph ∆4,1 has a single

vertex and no edges and the graph ∆4,2 is empty. For n = 5, ∆5,1 has
(
5
4

)
= 5

vertices and they are all connected. Therefore, ∆5,1 is the complete graph on 5
vertices K5. This gives that there are 10 edges in ∆5,1. The graph ∆5,2 is empty.

For n = 6, there are
(
6
4

)
= 15 vertices. Consider a vector of length 6 and weight
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4, for example (111100). To find a weight 4 vector that is not orthogonal to this,
it must intersect the support of the vector in 3 places and have exactly one 1 in
the remaining 2 places. Therefore, each vertex is connected to

(
4
3

)(
2
1

)
= 8 vertices.

That is ∆6,1 is a regular graph with 15 vertices and degree 8 and therefore has 60
edges.

Example 6. For n = 7, there are
(
7
4

)
= 35 vertices in ∆7,1. Then, to find a doubly-

even vector not orthogonal to a given vector there are
(
4
3

)(
3
1

)
+
(
4
1

)(
3
3

)
= 16 ways to

do it. Therefore, the degree of each of the 35 vertices is 16. Therefore, there are
280 edges in the graph.

Given a weight 4 vector of length 7 there are
(
4
2

)(
3
2

)
= 18 ways of producing a

doubly-even vector orthogonal to it. That is, given v1 there are 18 ways to produce
v2 such that v1 and v2 are doubly-even and orthogonal. These generate the code

0,v1,v2,v1+v2. Thus, each such code is counted 3 times and we have 35(18)
3 = 210

doubly-even codes of dimension 2 and length 7. That is the number of vertices in
∆7,2 is 210. The degree of every vertex in ∆7,2 is 6 and so there are 630 edges.

Theorem 4.16. The graph Θn,k is regular of degree 2n−k − 2n−2k+1.

Proof. There are 2n−1 self-orthogonal vectors in the ambient space, that is all of the
vectors in ⟨1⟩⊥. Thus, there are 2n−1−2n−k self-orthogonal vectors that are not in
the dual of a self-orthogonal code of dimension k. That is, we need a vector v to be
even but not be orthogonal to a code C, since otherwise {w |w ∈ C, [v,w] = 0} = C
and not a subcode of co-dimension 1. By Lemma 4.3, each code is constructed 2k−1

times. This gives that the degree is

2n−1 − 2n−k

2k−1
= 2n−k − 2n−2k+1.

Example 7. If k = 1 then the degree is 2n−1 − 2n−2+1 = 2n−1 − 2n−1 = 0 which
coincides with the information in Example 3.

Example 8. If k = n
2 then Θn,n2

= Γn where Γn is the graph formed by self-dual
codes as given in [6], since self-dual codes necessarily contain the all-one vector.
Theorem 4.16 gives that the degree of each vertex is 2n−k − 2n−2k+1 = 2

n
2 − 2

which is the degree given for Γn in [6].

We note that Theorem 4.16 would not apply to the graph Γn,k since if the all-
one vector were not present in the code C then there are vectors in C⊥ that are
not self-orthogonal so the counting would not be the same, that is there are not
2n−1 − 2n−k self-orthogonal vectors that are not in the dual of a self-orthogonal
code of dimension k. What we can see is the following.

Theorem 4.17. If v is a vertex in the graph Γn,k that corresponds to a self-
orthogonal code that does not contain the all-one vector then the degree of v is
2n−k − 2n−2k.

Proof. There are 2n−1 self-orthogonal vectors in the ambient space, that is all of
the vectors in ⟨1⟩⊥. Precisely half of the vectors in C⊥ are self-orthogonal. That
is D = {w | [w,1] = 0,w ∈ C⊥} has co-dimension 1 in C⊥. Thus, there are
2n−1 − 2n−k−1 self-orthogonal vectors that are not in the dual of a self-orthogonal
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code of dimension k. By Lemma 4.3, each code is constructed 2k−1 times. This
gives that the degree is

2n−1 − 2n−k−1

2k−1
= 2n−k − 2n−2k.

Let us revisit Example 2. The vertices corresponding to the self-orthogonal codes
that contain 1 have degree 0 as predicted by Theorem 4.16, that is 24−1−24−2+1 =
23 − 23 = 0 and the vertices corresponding to the self-orthogonal codes that do not
contain 1 have degree 4 as predicted by Theorem 4.17, that is 24−1−24−2 = 8−4 = 4.

Notice then that the graph Γn,k is not regular in general since there are two
different degrees a vertex can have.

Theorem 4.18. If v is a vertex corresponding to a self-orthogonal code containing
1 and w is a vertex corresponding to a self-orthogonal code that does not contain 1,
then v and w are not connected.

Proof. Let n be even. Let C be the code corresponding to v and D be the code
corresponding to w. If they were connected then they would share a subcode E
of co-dimension 1. If E contains 1 then E ⊂ D which contradicts the fact that
D does not contain 1. Therefore, E does not contain 1. This means that C =
⟨E,1⟩ and D = ⟨E,u⟩ where u is some self-orthogonal vector. But this contradicts
Theorem 4.6, since u is self-orthogonal giving that [u,1] = 0.

Theorem 4.19. The graph Θn,k and the graph Γn,k \Θn,k are connected graphs.

Proof. Let n be even. Let C and D be self-orthogonal codes that share a subcode
E of co-dimension 1 in each. Then C = ⟨E,v⟩ and D = ⟨E,w⟩. If [v,w] ̸=
0 then we are done by Theorem 4.6. If not, then there exists a self-orthogonal
vector u with [u,v] ̸= 0 and [u,w] ̸= 0 as long as none of these vectors is 1.
Then N(N(C,u),w) = D. Then applying this at most k times, any two codes are
connected in Θn,k and in Γn,k \Θn,k.

We summarize the results about the graphs.

Theorem 4.20. Let n be a positive integer and let k ≤ ⌊n
2 ⌋.

1. If n is odd the number of vertices in Γn,k is On,k =
∏k−1

i=0
(2n−1−2i−1)
(2k−i−1)

and the

graph Γn,k is a connected regular graph with degree 2n−k − 2n−2k.

2. If n is odd then the number of edges in Γn,k =
∏k−1

i=0
(2n−1−2i−1)
(2k−i−1)

(2n−k−1 −
2n−2k−1).

3. If n is even the number of vertices in Γn,k is(
2k

k−1∏
i=0

(2n−2(i+1) − 1)

(2k−i − 1)

)
+

(
k−2∏
i=0

(2n−2(i+1) − 1)

(2k−i−1 − 1)

)
.

4. If n is even, the number of vertices in Θn,k is
Hn,k−1

2k−1 =
∏k−1

i=1 (2n−i−2i)∏k−1
i=1 (2k−1−2i−1)

1
2k−1 .

The degree of each vertex in Θn,k is 2n−k − 2n−2k+1. The number of edges in
Θn,k is ∏k−1

i=1 (2
n−i − 2i)∏k−1

i=1 (2
k−1 − 2i−1)

(2n−2k − 2n−3k+1).
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5. If n is even, the number of vertices in Γn,k \Θn,k is 2k
∏k−1

i=0
(2n−2(i+1)−1)

(2k−i−1)
and

the degree of each vertex in Γn,k \Θn,k is 2n−k − 2n−2k. The number of edges
in Γn,k \Θn,k is

k−1∏
i=0

(2n−2(i+1) − 1)

(2k−i − 1)
(2n−1 − 2n−k−1).

6. If n is even, then Γn,k consists of two disjoint connected subgraphs, Θn,k and
Γn,k \Θn,k. Each connected subgraph contains an Euler cycle.

Proof. The number of vertices in Γn,k are given in Theorem 3.5. If n is odd then
Θn,k is empty and so Γn,k consists only of vertices corresponding to self-orthogonal
codes that do not contain 1. The degree comes from Theorem 4.16.

If n is odd, then the number of edges is 1
2 (
∏k−1

i=0
(2n−1−2i−1)
(2k−i−1)

(2n−k−2n−2k)) which

gives the result.
If n is even, Lemma 3.3 gives the number of vertices in Θn,k and the degree of

the vertices comes from Theorem 4.17.
For the number of edges in Θn,k we have

1

2

∏k−1
i=1 (2

n−i − 2i)∏k−1
i=1 (2

k−1 − 2i−1)

1

2k−1
(2n−k − 2n−2k+1)

=

∏k−1
i=1 (2

n−i − 2i)∏k−1
i=1 (2

k−1 − 2i−1)

1

2k
(2n−k − 2n−2k+1)

=

∏k−1
i=1 (2

n−i − 2i)∏k−1
i=1 (2

k−1 − 2i−1)
(2n−2k − 2n−3k+1).

For the number of edges in Γn,k \Θn,k, we have

1

2
2k

k−1∏
i=0

(2n−2(i+1) − 1)

(2k−i − 1)
(2n−k − 2n−2k)

= 2k−1
k−1∏
i=0

(2n−2(i+1) − 1)

(2k−i − 1)
(2n−k − 2n−2k)

=

k−1∏
i=0

(2n−2(i+1) − 1)

(2k−i − 1)
(2n−1 − 2n−k−1).

If n is even, the degree of every vertex is even, noting that if k = n
2 , Γn,k =

Θn,k.

Next, we give a table for the number of edges in the graphs, Γn,k, Θn,k and
Γn,k \ Θn,k. Table 2 gives the number of edges for some small values of n and
k ≤ ⌊n

2 ⌋, by Theorem 4.16. If, for example, n = 8 and k = 3, we get 315 self-
orthogonal codes containing 1, by Theorem 4.16. We also have that the degree of
each vertex in Θ8,3 is 28−3 − 28−6+1 = 24. Then, the number of edges in Θ8,3 is
315·24

2 = 3780, which is also given in the table.
Notice from the table that for even n, and k = 1, the graph Θn,k has zero edges

as the code is generated by the all-one vector and it has no edges. Notice also that
for even n, the numbers given for Θn,k, for k = n

2 , give the number of edges in the
graph Γn,k of self-dual codes. Therefore, the graph Γn,k \ Θn,k has no edges for
those rows as Θn,k = Γn,k, for k = n

2 , which is also equal to Γn−1,⌊n
2 ⌋.
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Table 2. The number of edges in graphs

Γn,k Θn,k Γn,k \Θn,k

n k #Edges n k #Edges n k #Edges

1 0 0 2 0 0 2 0 0

3 0 0 2 1 0 2 1 0

3 1 3 4 0 0 4 0 0

5 0 0 4 1 0 4 1 12

5 1 60 4 2 3 4 2 0

5 2 45 6 0 0 6 0 0

7 0 0 6 1 0 6 1 240

7 1 1008 6 2 60 6 2 360

7 2 3780 6 3 45 6 3 0

7 3 945 8 0 0 8 0 0

9 0 0 8 1 0 8 1 4032

9 1 16320 8 2 1008 8 2 30240

9 2 257040 8 3 3780 8 3 15120

9 3 321300 8 4 945 8 4 0

9 4 34425 10 0 0 10 0 0

11 0 0 10 1 0 10 1 65280

11 1 261888 10 2 16320 10 2 2056320

11 2 16695360 10 3 257040 10 3 5140800

11 3 87650640 10 4 321300 10 4 1101600

11 4 46955700 10 5 34425 10 5 0

11 5 2347785 12 0 0 12 0 0

13 0 0 12 1 0 12 1 1047552

13 1 4193280 12 2 261888 12 2 133562880

13 2 10724 · 105 12 3 16695360 12 3 14024 · 105
13 3 22789 · 106 12 4 87650640 12 4 15026 · 105
13 4 51276 · 106 12 5 46955700 12 5 150258240

13 5 12819 · 106 12 6 2347785 12 6 0

13 6 310134825

We obtain some equalities between the sequences obtained from Θn,k and Γn,k.
In general, we have that Θn,k = Γn−1,k−1. As a special case, the number sequence
obtained by Θn,2, for even n, is equal to the number sequence obtained by Γn−1,1.
This sequence is 3, 60, 1008, 16320, 261888, 4193280, . . . and it is given in OEIS in
[9], by the reference number A115490 which gives the number of monic irreducible
polynomials of degree 4 in F2n [x].
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