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Abstract
This paper defines a family of neural-network interpolation operators. The first
derivative of generalized logistic-type functions is considered as a density function.
Using the first-order uniform approximation theorem for continuous functions
defined on the finite intervals, the interpolation properties of these operators are
presented. A Kantorovich-type variant of the operators Fa,εn is also introduced. The
approximation of Kantorovich-type operators in LP spaces with 1≤ p ≤ ∞ is studied.
Further, different combinations of the parameters of our generalized logistic-type
activation function θs,a are examined to see which parameter values might give us a
more efficient activation function. By choosing suitable parameters for the operator
Fa,εn and the Kantorovich variant of the operator Fa,εn , the approximation of various
function examples is studied.

Keywords: Generalized logistic-type function; Neural-Network (NN) operators;
Interpolation; Uniform approximation; Order of approximation

1 Introduction
Neural Networks (NNs) are widely used in numerous areas such as visual recognition,
healthcare, astronomical physics, geology, cybersecurity, and many more. As the most
widely used neural networks, Feedforward Neural Networks (FNNs) have been exten-
sively studied thanks to their universal approximation capabilities. In theoretical terms,
we can state that a continuous function within any compact set can be approximated to
an arbitrary degree by FNNs, as long as the number of neurons is chosen large enough
[11].

The mathematical expression of the NNs with one hidden layer is:

Nσ ,n (x) =
n∑

i=1

ciσ (ai · x + bi) , x = (x1, x2, . . . , xs) ∈R
s, 1 ≤ i ≤ n, n ∈ N, (1)

where ai = (ai,1,ai,2, . . . , ai,s) ∈ R
s are the connection weights, ci ∈ R are the coefficients,

ai · x is the inner product of ai and x, and also σ is the activation function. See Fig. 1 for
the architecture of the neural network Nσ ,n(x).
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Figure 1 The structural diagram of the neural network Nσ ,n [23]

Thus far, some upper bounds on the approximation error of FNNs in the uniform metric
and Lp metric have been studied in [9–11, 14], and so on. Moreover, the theory of neural-
network (NN) operators activated by sigmodial functions has been extensively studied in
recent years, see e.g. [1, 6, 8, 10, 12, 13, 15]. Concerning applications to mathematics, more
precisely to approximation theory, several papers have been published, see, e.g., [7, 17–
20, 22, 23]. The main results proved in this field are characterized by a nonconstructive
approach, where for any given function f , the various elements that make up a neural
network that approximates f in some sense, such as coefficients, weights, and thresholds
cannot be determined in practice.

The NN operators studied here interpolate any given measurable and bounded func-
tion f on finite sets of uniform spaced notes taken on [α,β]. In addition, the order of ap-
proximation is estimated for continuous functions using the modulus of continuity of the
function to be approximated. We introduce some modifications to the classical definition
of the NN operators studied in [2–4, 16]. In particular, the definition of the density func-
tions generated by generalized logistic-type functions has been modified, together with
the values of the coefficients, the weights, and the thresholds of recommended operators.

The paper includes five sections. In the second section, we introduce the generalized
logistic-type function with its first and second derivatives, and determine some limit prop-
erties. In the third section, we constract the operator Fa,ε

n , which is considered as a density
function, and establish the interpolation properties of it. Moreover, we present the uni-
form first-order approximation theorem for continuous functions defined on the finite
intervals. Next, we introduce a Kantorovich-type variant of the Fa,ε

n operators. Later, the
approximation results of these operators are given in the spaces Lp with 1 ≤ p ≤ ∞ and
C[α,β], respectively. In the fourth one, varied parameter combinations of the proposed
generalized logistic-type activation function are analyzed to determine for which parame-
ter values we are able to obtain a more feasible activation function. Identifying convenient
parameters for the operators Fa,ε

n and the Kantorovich variant of Fa,ε
n , the numerical ap-

proximation results of some functions are studied enriched with graphs. In the fifth and
concluding section, we present the key findings of the study and their implications.
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2 Generalized logistic-type function
Let s > 0 be a real number, and also a > 0, H > 1 be parameters, the generalized logistic-
type function is defined in [5] as follows:

θs,a (x) =
1

1 + sH–ax =
Hax

s + Hax , (2)

where x ∈ R.
The first and second derivatives of the generalized logistic-type function θs,a(x) are given

below.
Let a, s > 0 be the parameters, and H > 1.
We have

θ ′
s,a (x) =

(
1

1 + sH–ax

)′

=
sa (lnH)H–ax

(1 + sH–ax)2 (3)

for all x ∈R.
Moreover, if we take the second derivative of (2) for x ∈ R, then we have

θ ′′
s,a(x) =

sa2 (ln (H))2 (s2H–ax – Hax)

(Hax + 2s + s2H–ax)2 . (4)

Proposition 1 Let a and s be the parameters such that a > 0, s > 0, and also H > 1, with
θs,a(x) given in (2).

Now, let us find the first derivative of θs,a(x):

θ ′
s,a(x) = sa (lnH)H–ax(1 + sH–ax)–2

= a (lnH) θs,a(x)(1 – θs,a(x)). (5)

Then, proceeding to find the second derivative of the function θs,a(x)

θ ′′
s,a(x) = a (lnH) (θs,a(x) – θ2

s,a(x))′

= a2 (ln (h))2 θs,a(x)(1 – θs,a(x))(1 – 2θs,a(x)) (6)

is obtained. The generalized logistic-type function θs,a(x) has the following properties:

lim
x→+∞ θs,a(x) = lim

x→+∞
Hax

s + Hax = 1,

lim
x→–∞ θs,a(x) = lim

x→–∞
Hax

s + Hax = 0,

lim
x→0

θs,a(x) = lim
x→0

Hax

s + Hax =
1

1 + s
; s > 0,

lim
x→0

θ ′
s,a(x) = lim

x→0

sa (lnH)

Hax(1 + sH–ax)2 =
sa (lnH)

(1 + s)2 ,

lim
x→±∞ θ ′

s,a(x) = lim
x→±∞

sa (lnH)

Hax + s2H–ax + 2s
= 0.
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In the following section, we define neural-network (NN) interpolation operators acti-
vated by the generalized logistic-type function. The interpolation properties of these op-
erators are obtained along with the uniform approximation theorem with order, for con-
tinuous functions defined on bounded intervals. Additionally, we establish a Kantorovich-
type variant of these operators and prove some approximation theorems for both C[α,β]

and Lp spaces, 1 ≤ p < ∞.

3 Interpolation and approximation results
Before defining the NN interpolation operator, let us introduce the related activation func-
tion and density function, respectively.

Now, let θs,a: R → [0, 1] be the generalized logistic-type function as follows:

θs,a(x) =
1

1 + sH–ax =
Hax

s + Hax . (7)

Remark 2 The generalized logistic-type function is an expanded version of a logistic-type
function. This function provides an opportunity to obtain a more effective activation func-
tion with appropriate parameter selections.

If s = 1 is taken in expression (3), this corresponds to a special case of the generalized
logistic-type function defined by [5], and the resulting expression can be considered as a
density function:

θ ′
1,a(x) =

a (lnH)H–ax

(1 + H–ax)2 . (8)

The function θ ′
1,a(x) satisfies the essential properties as follows:

(ψ1) θ ′
1,a(x) is an even function;

(ψ2) θ ′
1,a(x) is nondecreasing for x < 0 and nonincreasing for x ≥ 0;

(ψ3) supp
(
θ ′

1,a
) ⊆ [–Ua,ε , Ua,ε].

Finally, we observe that θ ′
1,a

(
Ua,ε

2

)
> 0, where

Ua,ε =
ln

[(
a(lnH)

ε
– 2

)
+

√(
a(lnH)

ε

)2
– 4

(
a(lnH)

ε

)]
– ln(2)

(lnH)a
, (9)

when the condition a(lnH)

ε
≥ 4 is satisfied.

This equation is solved using the equality a(lnH)H–ax

(1+H–ax)2 = ε. If we put Hax =: y, a(lnH)

ε
= c the

solution of the equation y
(

1 + 1
y

)2
= c gives (9).

Now, we may introduce the NN interpolation operators, which are based on the gener-
alized logistic-type functions, and study their important properties.

Definition 3 Let f : [α,β] → R be a bounded and measurable function and n ∈ N
+. The

NN interpolation operators, activated by the generalized logistic-type functions and act-
ing upon f , are given by

Fa,ε
n

(
f , x

)
=

∑n
k=0 f (xk) θ ′

1,a

(
Ua,ε

n
(
x–xk

)

β–α

)

∑n
k=0 θ ′

1,a

(
Ua,ε

n
(
x–xk

)

β–α

) , x ∈ [α,β], (10)
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where the xks are the uniform spaced notes given by xk = α +kh, k = 0, 1, . . . , n with h = β–α

n .

Remark 4 Different density functions may be employed in NN interpolation operators.
For example, Costarelli [16] defines the NN interpolation operator φR by considering a
special linear combination of shifted ramp functions as a density function as follows:

Gn
(
g, x

)
=

∑n
k=0 g (xk)φR

(
n
(
x–xk

)

b–a

)

∑n
k=0 φR

(
n
(
x–xk

)

b–a

) , x ∈ [a, b] ,

where the xks are the uniform spaced notes defined by xk = a + kh, k = 0, 1, . . . , n, with h =
β–α

n . Here, we consider function θ ′
1,a as a density function and θs,a as the activation function

to construct the operator Fa,ε
n . Figure 10 shows that for the function f , the operator Fa,ε

n

gives a better approximation than the operator Gn. Also, for the function g , the operator
Gn gives a better approximation than the operator Fa,ε

n .

We aim to give the following lemma that is of great importance for the proof of the
theorems in the rest of the paper.

Lemma 5 The operator Fa,ε
n satisfies the following essential properties:

(i) For every x ∈ [α,β], the following inequality holds

n∑

k=0

θ ′
1,a

(
Ua,ε

n(x – xk)

β – α

)
≥ θ ′

1,a

(
Ua,ε

n|x – xt|
β – α

)
.

(ii) If we choose t ∈ {0, 1, . . . , n} as a proper index such that |x – xt| ≤ h
2 , then

n∑

k=0

θ ′
1,a

(
Ua,ε

n(xt – xk)

β – α

)
≥ θ ′

1,a

(
Ua,ε

2

)

is satisfied.
(iii) For every bounded measurable function f : [α,β] → R, we have the inequality:

∣∣Fa,ε
n

(
f , x

)∣∣ ≤ ‖f ‖∞,

where ‖f ‖∞ = ess supx∈[α,β]

∣∣f (x)
∣∣.

Proof (i) It is clear from (ψ1).
(ii) follows from the observation that |x – xt| ≤ h

2 for t ∈ {0, 1, . . . , n},

Ua,ε
n|x – xt|
β – α

≤ Ua,ε
nh

2(β – α)
=

Ua,ε

2

and by property (ψ2) we have:

n∑

k=0

θ ′
1,a

(
Ua,ε

n(xt – xk)

β – α

)
≥ θ ′

1,a

(
Ua,ε

n|xt – xk|
β – α

)
≥ θ ′

1,a

(
Ua,ε

2

)
> 0.
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(iii) is obtained as follows: for every x ∈ [α,β], since

|Fa,ε
n (f , x)| ≤ ‖f ‖∞

∑n
k=0 θ ′

1,a

(
Ua,ε

n(xt–xk )
β–α

)

∑n
k=0 θ ′

1,a

(
Ua,ε

n(xt–xk )
β–α

) , (11)

where ‖f ‖∞ = ess supx∈α,β]

∣∣f (x)
∣∣, we obtain the desired result, thus the proof is complete.

�

Now, we can prove the following theorem, which represents the interpolation properties
of the operators Fa,ε

n in C[α,β] := {f |f : [α,β] →R continuous}.

3.1 Approximation results in the space C[α, β]
Theorem 6 Let f : [α,β] → R be a bounded and measurable function and n ∈ N

+. Then,
for every t = 0, 1, . . . , n.

Fa,ε
n

(
f , xt

)
= f (xt) .

Proof Let t = 0, 1, . . . , n be fixed. Initially, we note that when k = t, we obtain:

θ ′
1,a

(
Ua,ε

n(xt – xk)

β – α

)
= θ ′

1,a(0) =
a ln(H)

4
.

For k 
= t, we have the following:

Ua,ε
n|xt – xk|

β – α
≥ Ua,ε

nh
β – α

= Ua,ε .

Therefore, by using the properties (ψ1) and (ψ2) we obtain:

0 ≤ θ ′
1,a

(
Ua,ε

n(xt – xk)

β – α

)
= θ ′

1,a

(
Ua,ε

n|xt – xk|
β – α

)
≤ θ ′

1,a(Ua,ε) = 0.

Consequently, we reach the conclusion:

θ ′
1,a

(
Ua,ε

n(xt – xk)

β – α

)
=

⎧
⎨

⎩

aln(H)
4 , t = k,

0, t 
= k,
(12)

for every t,k = 0,1,. . . ,n. Thus, (12) leads to the following:

Fa,ε
n (f , xt) =

f (xt)θ ′
1,a

(
Ua,ε

n(xt–xk )
β–α

)

θ ′
1,a

(
Ua,ε

n(xt–xk )
β–α

) = f (xt),

for every t = 0,1,. . . n. This proves the desired result.
In what follows, for every continuous function f on the bounded interval [α,β], the

following uniform approximation theorem with order can also be proven. We consider
the first difference with step u,

	uf (x) = f (x + u) – f (x),
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of the function f , and put

ω(f , δ) = w(δ) = sup
x,x+u∈[α,β],|u|≤δ

∣∣f (x + u) – f (x)
∣∣ , (13)

for any function f ∈ C[α,β]. The function w(δ), which is called the modulus of continuity
of f , is defined for 0 ≤ δ ≤ l such that l = β – α. �

Theorem 7 Let f ∈ C[α,β], then

‖Fa,ε
n (f , .) – f (.)‖∞ ≤ 2

θ ′
1,a( Ua,ε

2 )
ω

(
f ,

β – α

n

)
,

for every n ∈N
+.

Proof For any fixed x ∈ [α,β] there exists t ∈ {0, 1, . . . , n – 1} such that xt ≤ x ≤ xt+1 and
by property (�2), we can express the result as follows:

∣∣Fa,ε
n

(
f , x

)
– f (x)

∣∣ =

∣∣∣
∑n

k=0 f (xk)θ ′
1,a

(
Ua,ε

n(x–xk )
β–α

)
– f (x)

∑n
k=0 θ ′

1,a

(
Ua,ε

n(x–xk )
β–α

)∣∣∣
∑n

k=0 θ ′
1,a

(
Ua,ε

n(x–xk )
β–α

)

≤ 1

θ ′
1,a

(
Ua,ε

2

)
n∑

k=0

∣∣f (xk) – f (x)
∣∣ θ ′

1,a

(
Ua,ε

n(x – xk)

β – α

)

=
1

θ ′
1,a

(
Ua,ε

2

)

⎡

⎢⎣
n∑

k=0
k 
=i,i+1

∣∣f (xk) – f (x)
∣∣ θ ′

1,a

(
Ua,ε

n(x – xk)

β – α

)

+
∣∣f (xi) – f (x)

∣∣ θ ′
1,a

(
Ua,ε

n (x – xt)

β – α

)

+
∣∣f (xi+1) f (x)

∣∣ θ ′
1,a

(
Ua,ε

n (x – xt+1)

β – α

)]

=
I1 + I2 + I3

θ ′
1,a

(
Ua,ε

2

) .

It is easy to see that, for k 
= t, t + 1 we have Ua,ε
n|x–xk |

β–α
≥ Ua,ε

nh
β–α

= Ua,ε . Then, by (ψ1),

(ψ2), and (ψ3) we obtain θ ′
1,a

(
Ua,ε

n(x–xk )
β–α

)
= θ ′

1,a

(
Ua,ε

n|x–xk |
β–α

)
= 0. The observation above

implies that I1 = 0.
Note that |xt – x| ≤ h and |xt+1 – x| ≤ h, we can state;

|f (xt) – f (x)| ≤ ω(f , h) = ω

(
f ,

β – α

n

)

and similarly,

|f (xt) – f (x)| ≤ ω(f , h) = ω

(
f ,

β – α

n

)
.
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Then, we finally have I1 + I2 + I3 = I2 + I3 ≤ 1
θ ′

1,a

( Ua,ε
2

) 2ω
(

f , β–α

n

)
, and that completes the

proof. �

Now, we investigate the approximation results of NN operators in the space Lp with 1 ≤
p ≤ ∞. We define a Kantorovich-type variant of Fa,ε

n . Later, the theorem of approximation
by the Kantorovich-type operator in Lp is given.

3.2 Approximation results in the space Lp[α, β]
Let 1 ≤ p < ∞. The space Lp[α,β] consists of all measurable functions f for which the
following is finite

⎧
⎨

⎩
‖f ‖p =

(∫ β

α

∣∣f (x)
∣∣p dx

) 1
p , 1 ≤ p < ∞,

‖f ‖∞ = ess sup
∣∣f (x)

∣∣
x∈[α,β] , p = ∞.

For any f ∈ Lp[α,β], the modulus of continuity of f is defined as follows:

ω(f , δ)p =

⎧
⎨

⎩
sup|u|≤δ

(∫ β

α

∣∣f (x + u) – f (x)
∣∣p dx

) 1
p , 1 ≤ p < ∞

ess supx,x+u∈[α,β],|u|≤δ

∣∣f (x + u) – f (x)
∣∣ , p = ∞.

Taking into account the following assumption

n∑

k=0

θ ′
1,a

(
Ua,ε

n(x – xk)

β – α

)
= 1, (14)

in (10), we can define the Kantorovich variant of the operator Fa,ε
n as follows:

Ka,ε
n (f , x) =

n + 1
β – α

n∑

k=0

∫ mk+1

mk

f (η)dηθ ′
1,a

(
Ua,ε

n(x – xk)

β – α

)
,

where

mk = α +
(β – α)k

n + 1
, k = 0, 1, . . . , n + 1.

Remark 8 The Kantorovich-type variant of operators may also vary with respect to acti-
vation functions, which lead to different results in function approximations. For example,
Qian and Yu [23] define the Kantorovich the variant as

Tn,σ (f , x) =
n + 1
b – a

n∑

k=0

∫ yk+1

yk

f (t)dtφ
(

2m
h

(x – xk)

)
,

with ϕ as the activation function, and where

yk = a +
(b – a)k

n + 1
, k = 0, 1, . . . , n + 1.

Based on this, in the fourth section, two operators are compared for a discontinuous
function and analyzed to determine which one gives a better approximation.

Now, we show that operators Ka,ε
n are bounded in Lp[α,β].
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Lemma 9 Let 1 ≤ p ≤ ∞. If f ∈ Lp[α,β] then, we have:

‖Ka,ε
n (f )‖p ≤ (a (ln H))

1
p ‖f ‖p. (15)

Proof When 1 ≤ p < ∞, for any x ∈ [α,β], it holds that Fa,ε
n (1, x) = 1. Applying Hölder’s

inequality for p > 1, we obtain

‖Ka,ε
n

(
f
)‖p

p =
∫ β

α

∣∣Ka,ε
n

(
f
)∣∣p dx

≤
∫ β

α

(
n + 1
β – α

)p
( n∑

k=0

∣∣∣∣
∫ mk+1

mk

f (η)dη

∣∣∣∣ θ
′
1,a

(
Ua,ε

n (x – xk)

β – α

))

( n∑

k=0

θ ′
1,a

(
Ua,ε

n (x – xk)

β – α

))p–1

dx

=
∫ β

α

(
n + 1
β – α

)p n∑

k=0

∣∣∣∣
∫ mk+1

mk

f (η)dη

∣∣∣∣

× θ ′
1,a

(
Ua,ε

n (x – xk)

β – α

)
dx

≤ n + 1
β – α

∫ β

α

n∑

k=0

θ ′
1,a

(
Ua,ε

n (x – xk)

β – α

)∫ mk+1

mk

∣∣f (η)
∣∣p dηdx.

=
n + 1
β – α

n–1∑

j=0

n∑

k=0

∫ xj+1

xj

θ ′
1,a

(
Ua,ε

n (x – xk)

β – α

)
dx

×
∫ mk+1

mk

∣∣f (η)
∣∣p dη.

Using the expression θ ′
1,a

(
Ua,ε

n|x–xk |
β–α

)
= 0 for k 
= t, t + 1, and the fact that ‖θ ′

1,a‖ = a(lnH)

4 ,
we have:

‖Ka,ε
n

(
f
)‖p

p ≤ n + 1
β – α

a (lnH)

4

n–1∑

j=0

∑

k=j,j+1

(
xj+1 – xj

)∫ mk+1

mk

∣∣f (η)
∣∣p dη

≤ n + 1
n

a (lnH)

4

⎛

⎝
n–1∑

j=0

∫ mj+1

mj

∣∣f (η)
∣∣p dη +

n–2∑

j=0

∫ mj+2

mj+1

∣∣f (η)
∣∣p dη

⎞

⎠

≤ a (ln H)‖f ‖p
p

and this proves (15) for 1 ≤ p < ∞.
Let us recall the definition of the well-known Steklov function fh(x):
For an integrable function f defined on the closed and bounded interval [α,β], the func-

tion fh is defined as:

fh(x) =
1
h

∫ x+h

x
f (u)du =

1
h

∫ h

0
f (x + u)du, α ≤ x ≤ β – h,
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where h = β–α

n . This function, expressed in the given form, is called the Steklov function
associated with the interval [α,β] [24]. The Steklov function fh has a derivative:

f ′
h(x) =

1
h

(f (x + h) – f (x)) (16)

and it holds almost everywhere in [α,β –h]. Then, fh is uniformly continuous on the [α,β –
h], we have:

‖f – fh‖Lp[α,β–h] ≤ ω(f , h)p, 1 ≤ p ≤ ∞, (17)

‖f ′
h‖Lp[α,β–h] ≤ 1

h
ω(f , h)p, 1 ≤ p ≤ ∞,

where ω(f , h) is the modulus of continuity of fh.
Set

f̂h (x) =

⎧
⎨

⎩
fh (x) , α ≤ x ≤ β – h

fh (β – h) , β – h < x ≤ β .
(18)

Then, it holds almost everywhere in [α,β] that

(f̂h(x))′ =

⎧
⎨

⎩
f ′
h(x), α ≤ x ≤ β – h

0, β – h < x ≤ β .
(19)

�

Lemma 10 ([23, 25]) Let 1 ≤ p ≤ ∞. If f ∈ Lp [α,β]. Then,

‖f – f̂h(x)‖p ≤ (1 + 2
1
p )ω(f , h)p. (20)

h‖f̂h(x)′‖ ≤ ω(f , h)p. (21)

Lemma 11 Let f ∈ Lp[α,β], 1 ≤ p ≤ ∞. Then,

‖Ka,ε
n f̂h(x) – f̂h‖p ≤ a (ln H) × 2

1
p ω(f , h)p.

Proof For j = 0,1,. . . ,n – 1, observing that mj ≤ xj ≤ mj+1 ≤ xj+1 ≤ mj+2, t = 0,1,. . . ,n – 1, for
1 ≤ p ≤ ∞ we have

∫ xj+1

xj

∣∣∣∣∣

n∑

k=0

∫ mk+1

mk

(
f̂h (η) – f̂h (x)

)
dη

(
θ ′

1,a

(
Ua,ε

n (x – xk)

β – α

))∣∣∣∣∣

p

dx

=
∫ xj+1

xj

∣∣∣∣∣∣

∑

k=j,j+1

∫ mk+1

mk

(
f̂h (η) – f̂h (x)

)
dη

(
θ ′

1,a

(
Ua,ε

n (x – xk)

β – α

))∣∣∣∣∣∣

p

dx

≤
∫ xj+1

xj

⎛

⎝

∣∣∣∣∣∣

∑

k=j,j+1

∫ mk+1

mk

∣∣∣∣
∫ x

η

(f̂h(λ))′dλ

∣∣∣∣dη

∣∣∣∣∣∣

(
θ ′

1,a

(
Ua,ε

n (x – xk)

β – α

))p
⎞

⎠dx
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≤
(

a (lnH)

2

)p ∫ xj+1

xj

(∣∣∣∣∣

∫ mj+1

mj

∫ xj+1

mj

∣∣∣(f̂h(λ))′
∣∣∣dλ

∣∣∣∣∣

p

dη

×
∣∣∣∣∣

∫ mj+2

mj+1

∫ mj+2

xj

|(f̂h(λ))′|dλ

∣∣∣∣∣

p

dη

)
dx

≤
(

a (lnH)

2

)p
β – α

n

(
β – α

n + 1

)p
(∣∣∣∣∣

∫ xj+1

mj

∣∣∣(f̂h(λ))′
∣∣∣dλ

∣∣∣∣∣

p

+

∣∣∣∣∣

∫ mj+2

xj

|(f̂h(λ))′|dλ

∣∣∣∣∣

p)

≤ (a (lnH))p21–p β – α

n

(
β – α

n + 1

)p
(∫ mj+2

mj

∣∣∣(f̂h(λ))′
∣∣∣dλ

)p

≤ (a (lnH))p β – α

n

(
β – α

n + 1

)2p–1 ∫ mj+2

mj

∣∣∣(f̂h(λ))′
∣∣∣
p

dλ.

Note that the last inequality uses Hölder’s inequality for p > 1, consequently,

‖Ka,ε
n

(
f̂h

)
– f̂h‖p

p

=
(

n + 1
β – α

)p n–1∑

j=0

∫ xj+1

xj

∣∣∣∣∣

n∑

k=0

(
θ ′

1,a

(
Ua,ε

n (x – xk)

β – α

))∫ mj+1

mj

((f̂h(η) – f̂h(x))dη

∣∣∣∣∣

p

≤ (ah (lnH))p
n–1∑

j=0

∫ mj+2

mj

∣∣∣(f̂h(λ))′
∣∣∣
p

dλ

≤ 2(ah (ln H))p‖f̂h(λ)′‖p
p

≤ 2 × (a (ln H))pω(f , h)p
p,

where in the last inequality, (20) is used. When p = ∞, we have for any x ∈ [xj, xj+1] that

∣∣∣Ka,ε
n

(
f̂h, x

)
– f̂h (x)

∣∣∣ =
n + 1
β – α

∣∣∣∣∣

n∑

k=0

(
θ ′

1,a

(
Ua,ε

n (x – xk)

β – α

))∫ mk+1

mk

(f̂h(η) – f̂h(x)dη

∣∣∣∣∣

≤ a (lnH)

4
n + 1
β – α

∑

k=j,j+1

∫ mk+1

mk

∣∣∣∣
∫ x

t
(f̂h(λ))′du

∣∣∣∣dη

≤ a (lnH)

4

(∫ xj+1

mj

∣∣∣(f̂h(λ)′
∣∣∣dλ +

∫ mj+2

xj

∣∣∣∣
(

f̂h(λ)
)′∣∣∣∣dλ

)

≤ a (ln H)

4
‖(f̂h)′‖ (∣∣xj+1 – mj

∣∣ +
∣∣mj+2 – xj

∣∣)

≤ ah (ln H)‖(f̂h)′‖
≤ a (ln H)ω(f , h)∞. �

Theorem 12 If f ∈ Lp[α,β], (1 ≤ p ≤ ∞), then

‖Ka,ε
n (f ) – f ‖p ≤

(
1 + (a (ln H) + 1) × 2

1
p + (a (ln H))

1
p + (2a (ln H))

1
p
)

ω(f , h)p. (22)
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Proof By using (15), Lemma 10, and Lemma 11, we have:

‖Ka,ε
n

(
f
)

– f ‖p ≤
∥∥∥Ka,ε

n (f – f̂h)
∥∥∥ +

∥∥∥Ka,ε
n (f̂h) – f̂h)

∥∥∥
p

+
∥∥∥f – f̂h

∥∥∥
p

≤ ((a (ln H))
1
p + 1)‖f – f̂h‖p + a (ln H) × 2

1
p ω(f , h)p

≤
((

(a (ln H))
1
p + 1

)
(1 + 2

1
p ) + a (ln H) × 2

1
p
)

ω(f , h)p

≤
(

1 + (a (ln H) + 1) × 2
1
p + (a (ln H))

1
p + (2a (ln H))

1
p
)

ω(f , h)p. �

4 Numerical examples
In this section, we observe how the generalized logistic-type function evolves for different
parameter values. These graphical results have been generated using the computer pro-
gramming language Python 3.8 (see [6, 21] and references therein). As can be seen in the
graphs below, we can make the following inferences for the parameters. While the param-
eters H and a increase, the support interval decreases. The approximation behavior of
the operators Fa,ε

n and Ka,ε
n to the functions with respect to the choice of parameters n, a,

and H are investigated. In Fig. 10, the operators Fa,ε
n and “Gn” [16] are compared. For the

function f , the operator Fa,ε
n performs a better approximation; while for g , the operator

“Gn” demonstrates a better approximation. Then, the approximation performances of the
operators Ka,ε

n and Tn,σ to the function h and z is analyzed and it is seen that the operator
Ka,ε

n gives a preferable approximation in Fig. 11.
Let us dive into the above-mentioned analysis. First, in Fig. 2 the support values are cal-

culated for (H , a, ε) under the condition a(lnH)
ε

≥ 4 for values (1.2, 1, 0.01), (1.2, 1, 0.001),
(1.2, 1, 0.0001), (2, 1, 0.01), (2, 1, 0.001), (2, 1, 0.0001). Again in Fig. 3, the support

Figure 2 Comparison of support range and maximum point for different values of H
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Figure 3 Comparison of support range and maximum point for different values of a

Table 1 Maximum error of Operator 1 used in Fig. 4 for different values of n

Operator type a H n Maximum error

Operator 1 0.8 1.01 20 0.6348
0.8 1.01 50 0.2506
0.8 1.01 100 0.1416

Table 2 Maximum error of Operator 1 used in Fig. 5 for different values of H

Operator type a H n Maximum error

Operator 1 2.5 1.01 50 0.0841
2.5 100 50 0.1744

Table 3 Maximum error of Operator 1 used in Fig. 6 for different values of a

Operator type a H n Maximum error

Operator 1 0.1 1.1 50 0.2086
100 1.1 50 0.1724

values for (H , a, ε) are calculated under the same condition a(lnH)
ε

≥ 4 for another
six values (1.2, 1, 0.01), (1.2, 1, 0.001), (1.2, 1, 0.0001), (1.2, 2, 0.01), (1.2, 2, 0.001),
(1.2, 2, 0.0001), respectively.

Secondly, Tables 1–3 represent maximum error values of Operator 1 used in Figs. 4–6;
the subsequent Tables 4–6 demonstrate the maximum error values of Operator 3 inserted
in Figs. 7–9 for specific values of n, H , and a. Lastly, Tables 7 and 8 yield other numerical
results.
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Figure 4 Approximation of Operator 1 to sin (x) for different values of n

Figure 5 Approximation of Operator 1 to sin (x) for different values of H

Figure 6 Approximation of Operator 1 to sin (x) for different values of a

5 Conclusion
In this paper, the first derivative of the generalized logistic-type function θs,a for a, s > 0 is
considered and also used as the density function into the NN interpolation operators Fa,ε

n .
The derivative of the generalized logistic-type function has extremely small values at +∞
and –∞. This leads to the vanishing gradient problem, so the weight and bias values in
the cells cannot be updated efficiently. Therefore, no efficient “learning” occurs. In fact,
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Table 4 Maximum error of Operator 3 used in Fig. 7 for different values of n

Operator type a H n Maximum error

Operator 3 0.5 100 20 16.2001
0.5 100 100 15.4426

Table 5 Maximum error of Operator 3 used in Fig. 8 for different values of H

Operator type a H n Maximum error

Operator 3 0.1 2 100 17.6894
0.1 100 100 31.8502

Table 6 Maximum error of Operator 3 used in Fig. 9 for different values of a

Operator type a H n Maximum error

Operator 3 0.1 100 100 18.3994
2 100 100 31.8502

Figure 7 Approximation of Operator 3 to h(x) for different values of n

Figure 8 Approximation of Operator 3 to h(x) for different values of H

a wider support interval allows us to achieve better results. Our support values vary ac-
cording to the H , a, ε. As can be seen from the graphs in the article; as the parameters H
and a decrease, our support range increases, so we can create a better logistic function by
making appropriate choices. Furthermore, when the parameter values of H , a, ε, and n of
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Figure 9 Approximation of Operator 3 to h(x) for different values of a

Table 7 Maximum error of Operator 1 and Operator 2 used in Fig. 10 for specific values of a, H, and n

Operator type a H n Functions Maximum error

Operator 1 (Fa,εn ) 0.1 1.01 20 f g 0.7065 0.1104
Operator 2 (Gn) 0.1 1.01 20 f g 0.9916 0.0381

Table 8 Maximum error of Operator 3 and Operator 4 used in Fig. 11 for some values of a, H,m, and
n

Operator type a H m, n Functions Maximum error

Operator 3 (Fa,εn ) 0.5 100 10,100 z h 0.5076 15.4426
Operator 4 (Tn,σ ) 0.5 100 10,100 z h 0.5879 15.8871

Figure 10 Comparison of approximations of Fa,εn (Operator 1) and Gn (Operator 2) to functions f and g,

defined as: f (x) =

⎧
⎨

⎩

sin( π2 x)
π
2 x

, x 
= 0

1, x = 0
g(x) =

{
sin(x)
x , x 
= 0

1, x = 0

the operator Fa,ε
n are chosen appropriately, the approximation to the function improves.

Here, the appropriate parameter selection and maximum error may vary according to the
functions selected. The proposed operator Fa,ε

n shows a better approximation performance
than the other NN interpolation operators for some functions. Finally, the approximation
of the Fa,ε

n to the functions h and z is analyzed and its maximum error is found.
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Figure 11 Comparison of approximations of the Fa,εn (Operator 3) and Tn,σ (Operator 4) to functions z and h

defined as: z(x) = sin(x)
√|cos(x)| h(x) =

⎧
⎪⎨

⎪⎩

sin(2x), x < –5

x2, –5 ≤ x < 5

cos(πx), x ≥ 5.
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