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Abstract
Aging is a risk factor for various human disorders, including cancer. Current lit-
erature advocates that the primary principles of aging depend on the endogenous 
stress-	induced	DNA	damage	caused	by	reactive	oxygen	species	50 Hz	low-	frequency	
magnetic field was suggested to induce DNA damage and chromosomal instability. 
NF- kB, activated by DNA damage, is upregulated in age- related cancers and inhibi-
tion of NF- kB results in aging- related delayed pathologies. Metformin (Met), an NF- 
kB inhibitor, significantly reduces both NF- kB activation and expression in aging and 
cancer. This in vitro study, therefore, was set out to assess the effects of 5mT MF in 
50 Hz	frequency	and	Met	treatment	on	the	viability	and	proliferation	of	aged	mouse	
NIH/3T3 fibroblasts and expression of RELA/p65, matrix metalloproteinases MMP2 
and MMP9, and E- cadherin (CDH1) genes. The trypan blue exclusion assay was used to 
determine cell viability and the BrdU incorporation assay to determine cell prolifera-
tion. The MMP- 2/9 protein analysis was carried out by immunocytochemistry, NF- kB 
activity	by	ELISA	and	the	expressions	of	targeted	genes	by	qRT–PCR	methods.	Four	
doses	of	Met	 (500	uM,	1 mM,	2 mM	and	10 mM)	suppressed	both	the	proliferation	
and viability of fibroblasts exposed to the MF in a dose- dependent pattern, and the 
peak	inhibition	was	recorded	at	the	10 mM	dose.	Met	reduced	the	expression	of	NF- 
kB, and MMP2/9, elevated CDH1 expression and suppressed NF- kB activity. These 
findings	suggest	that	Met	treatment	suppresses	the	carcinogenic	potential	of	50 Hz	
MFs in aged mouse fibroblasts, possibly through modulation of NF- kB activation and 
epithelial- mesenchymal transition modulation.
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1  |  INTRODUC TION

Extremely	 low-	frequency	 magnetic	 fields	 (ELF-	MF)	 are	 generated	
during the production and transmission of electricity, as seen in 
power lines, railways and household electrical devices. On a daily 
basis,	we	encounter	50–60 Hz	ELF-	EMFs	emitted	by	the	majority	of	
household electrical appliances.1 Numerous epidemiological research 
findings indicate that exposure to ELF- EMF has been associated with 
an increased risk of cancer development, encompassing leukaemia, 
brain tumours and breast cancers.2 In 2002, the International Agency 
for	Research	on	Cancer	 (IARC)	categorized	ELF-	EMFs	as	a	possible	
carcinogen,	group	2B	(IARC,	2002).	Studies	in	this	field	suggest	that	
exposure	to	low-	intensity	and	low-	frequency	electromagnetic	fields	
may alter DNA integrity, potentially initiating carcinogenic processes 
or accelerating the development or spread of existing cancers.3,4

Brabant et al. identified a correlation between ELF- MF exposure 
and an increased risk of childhood leukaemia.2 Giorgi and Del Re con-
ducted a comprehensive review of epidemiological studies and found 
compelling evidence supporting this association. The evidence pre-
sented in this review indicates that ELF- MF exposure may contribute 
to an elevated risk of childhood leukaemia and a clear link exists be-
tween epigenetic alterations and pathological conditions, including 
cancer, as well as aging.5 Furthermore, a meta- analysis of ELF- EMF 
exposure and breast cancer risk in postmenopausal women suggests 
that ELF- EMF may lead to augmented risk of breast cancer.6

Despite the limited data available from experimental studies, the 
potential for ELF- MF exposure to induce adverse health effects re-
mains a subject of ongoing discussion.7,8 Although there is a general 
consensus regarding the negative effects of EMFs, some studies have 
highlighted the positive effects of magnetic field (MF) therapy, par-
ticularly in the cancer treatment, especially when combined with an-
ticancer drugs.9,10 Although ELF- MF exposure alone appears to have 
a negligible or insignificant effect on apoptosis, its interaction with 
other	factors,	such	as	chemotherapeutic	agents	or	ionizing	radiation,	
can lead to unpredictable and sometimes paradoxical outcomes. This 
complex interplay likely contributes to the conflicting evidence re-
garding ELF- MF's influence on cellular death.11	It	is	hypothesized	that	
ELF- MF exposure could modify the properties of breast cancer cells 
and enhance doxorubicin's (a prominent chemotherapeutic agent) 
anti- proliferative efficacy.12	Ramazi	et	al.	discovered	that	ELF-	MF	ex-
posure increased the effectiveness of doxorubicin by inducing a high 
level of cell toxicity and stimulating the production of reactive oxygen 
species	 (ROS).13 Epidemiological cancer studies in humans support 
these findings, suggesting that ELF- MF exposure can cause DNA 
damage, potentially leading to cancer and related diseases.14

There	are	growing	concerns	about	the	potential	biological	haz-
ards	associated	with	ELF-	EMFs.	In	particular,	the	MFs	at	50–60 Hz	
frequency	had	a	contributory	effect	between	aging	and	cancer.15–17 
Falone et al. showed that exposure to ELF- MF causes a significant 
weakening of antioxidant defence systems in aged rat brain.15	ROS	
based cellular damage accumulation is the key concept underlying 
the functional losses associated with aging, which is the basis of the 
oxidative stress theory.18 Recent experimental studies suggest that 

elevated	 intracellular	 ROS	 levels,	 owing	 to	 an	 ELF-	MF	 exposure,	
thus, enable several cellular modifications including DNA damage, 
chromosomal instability and apoptosis.15–17 For instance, a 1 mT EMF 
at	60 Hz	induced	chromosomal	instability	in	human	fibroblasts	and	
a	5	mT	EMF	at	60 Hz	caused	cell	death	by	generating	ROS	in	human	
HL- 60 promyelocytic leukaemia cells.16,17 Additionally, a 14 μT EMF 
at	60 Hz	triggered	apoptosis	in	mouse	testicular	germ	cells,	while	a	
100 μT	EMF	at	50 Hz	halted	the	cell	cycle	at	the	G1	phase	in	human	
SH-	SY5Y	neuroblastoma	cells.19,20 Regarding the effects on cellular 
processes in cancerogenesis, in 2023, a proteomic data analysis con-
ducted	by	Lazzarini	et	al.	identified	changes	in	MDA-	MB-	231	breast	
cancer	cells	exposed	to	50 Hz	ELF-	MF,	demonstrating	a	decrease	in	
adhesive properties and an increase in cell migration and invasion 
capabilities.21

Constitutive activation of nuclear factor- kappa B (NF- kB) has 
been identified as a hallmark of both aging and cancer cells in vari-
ous studies, including our previous papers.22–25 NF- kB/Rel protein is 
formed by a combination of two different subunits, p50 and p65, re-
spectively. The nuclear translocation and elevated expression of the 
p65 subunit were reported to be directly correlated with the tran-
scriptional NF- kB activity.26 The participation of constitutive NF- kB 
(p65 subunit) activity in the expression of epithelial- to- mesenchymal 
transition (EMT), prometastatic and proangiogenic genes including 
E- cadherin and matrix metalloproteinases (MMPs) in cancer cells 
was confirmed through numerous studies. During EMT, the down-
regulation of e- cadherin through a complex network of signalling 
pathways and transcription factors, including NF- kB, initiates cancer 
metastasis.27,29 The findings of Kim et al. (2017) strongly suggest 
that ELF- EMF exposure can activate the NF- κB signalling pathway in 
murine macrophage cells, leading to increased inflammation.29 This 
evidence supports the hypothesis that ELF- EMF may play a role in 
inflammatory processes. Moreover, two of the MMPs, MMP- 2 and 
MMP- 9 have also been attributed to metastatic cancer development 
and progression through their functions in cell proliferation, angio-
genesis and migration.30

NF- κB inhibitors are generally used to reduce and/or prevent 
cancer metastasis by suppressing the expression of these promet-
astatic genes.31 Metformin (Met), one such inhibitor, has a globally 
accepted anti- cancer effect, potentially inducing cellular apoptosis 
and arresting the cancer cell cycle, thereby suppressing tumour pro-
liferation.32 Moiseeva et al. demonstrated that Met exerts its anti-
cancer effects through growth and invasion inhibition by blocking 
NF- κB activity and expression. However, the precise mechanisms by 
which Met protects aged cells exposed to ELF- MF remain largely 
unexplored.33

This study investigates the potential of Met to mitigate cancer/
aging-	related	effects	induced	by	50 Hz	MF	exposure	(5 mT)	in	aged	
mouse NIH/3T3 fibroblasts. We will assess cell viability, prolifera-
tion, expression of MMPs (MMP- 2 and MMP- 9), E- cadherin (CDH1), 
RELA/p65 genes and NF- kB (p65) DNA binding activity. By eluci-
dating	 the	 molecular	 mechanisms	 underlying	 50 Hz	 MF-	mediated	
carcinogenesis in these cells and the protective effects of Met 
administration, we aim to reveal the versatile functions of Met in 
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the context of viability, proliferation and metastasis of aged mouse 
NIH/3T3 fibroblasts.

2  |  MATERIAL S AND METHODS

2.1  |  Cell culture

The NIH/3T3 mouse fibroblasts were purchased from ATCC. The 
cells were cultured at 37°C in a 5% CO2- containing incubator using 
Dulbecco's modified Eagle's medium including 10% fetal bovine 
serum,	100 U/mL	penicillin	and	100 μ g/mL	streptomycin.	The	cells	
in their exponential growth stage were digested by trypsin and 
passaged	 into	 T25	 flasks.	 After	 the	 15th–20th	 passages,	 cultured	
NIH/3T3 fibroblasts were used as an in vitro model for cell aging, 
as previously mentioned.23 The cells were then exposed to four 
different concentrations of Met HCL- Wanbury (H10000691) for 
24 h:	500 μM,	1 mM,	2 mM	and	10 mM.	The	six	experimental	groups	
were as follows: the control group (without Met and without MF), 
the	 50 Hz	 MF	 group,	 and	 four	 distinct	 Met	 administered	 groups	
(50 Hz	MF + 500 μM	Met	group,	50 Hz	MF + 1 mM	Met	group,	50 Hz	
MF + 2 mM	Met	group,	50 Hz	MF + 10 mM	Met	group).	The	cells	of	
Met administered groups were incubated with a medium prepared 
with	four	different	concentrations	of	Met	(500 μM,	1 mM,	2 mM	and	
10 mM)	for	24 h	before	the	application	of	50 Hz	MF	for	1 h.

2.2  |  MF exposure setup

Eight serially connected copper solenoid coils, each having 560 turns, 
were used to generate the MF according to previous studies.34 The 

magnetic flux intensity was improved by filling the cores of the coils 
with soft iron rods and secured with clamps to improve MF strength. 
The coils were mounted vertically, and the cell culture flasks were 
kept	 1.2 cm	 above	 the	 coils	 to	 prevent	 vibration.	Additionally,	 the	
coils were isolated from the cell culture flasks using wooden spacers 
(each	1 cm	thick)	to	prevent	heat	transfer	from	the	coils	to	the	cell	
cultures (Figure 1A). The electrical connection was established 
by	 connecting	 the	 220 V	 sinusoidal	 city	 electric	 systems	 at	 50 Hz	
frequency	 The	 experimental	 set-	up	 was	 maintained	 by	 stabilizing	
the	system	at	90%–95%	humidity	and	37°C	 temperature.	The	MF	
strength was measured at five different predetermined points in 
culture	 flasks	 and	 confirmed	 to	 be	 5 mT	 using	 a	 Leybold	Heraeus	
54050 Hall effect tesla meter as the applied current passed through 
the coils.

2.3  |  Cell viability determined by the trypan 
blue assay

The	 trypan	 blue	 exclusion	 assay	 (0.4	 percent,	 Sigma-	Aldrich,	
Germany) was used to detect the viability of NIH/3T3 fibroblasts. 
In	brief,	the	centrifuged	cell	supernatant	was	resuspended	in	1 mL	
of	phosphate-	buffered	saline	(PBS).	An	equal	volume	of	trypan	blue	
and the cell suspension were mixed, and the cell- trypan blue mix-
ture	was	 incubated	at	 room	temperature	 for	3 min.	A	drop	of	 the	
suspension was then placed in a haemocytometer and observed 
under a microscope. The viability of the cells was determined ac-
cording to their stained or unstained status. The proportion of vi-
able cells (/mL) was estimated using formula of [(total viable cells/
ml)/(total cell count/ml)] × 100	 after	 multiplying	 by	 two	 (dilution	
factor).

F I G U R E  1 (A)	Schematic	diagram	of	the	50 Hz	5	mT	MF	exposure	system	for	experimental	studies.	(B)	Effects	of	metformin	(500 μM, 
1 mM,	2 mM	and	10 mM)	treatment	on	viability	in	aged	mouse	fibroblast	exposed	to	50 Hz	MF.	*p = 0.02;	**p = 0.001;	***p = 0.006.	Data	were	
expressed	as	the	mean ± SD	from	five	independent	experiments.
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2.4  |  Analysis of proliferation by the BrdU 
incorporation assay

5- Bromo- 2′- deoxyuridine (BrdU) was prepared according to the 
manufacturer's	 instructions	 (Sigma-	Aldrich,	Schnelldorf,	Germany).	
BrdU was monitored through the visual colorimetric staining proce-
dures mentioned previously in the literature.26 A camera- attached 
light microscope (CKX41; Olympus, Tokyo, Japan) was used to cap-
ture the cell images.

2.5  |  Immunocytochemical analysis of the 
expression levels of MMP- 2 and MMP- 9

The	aged	NIH/3T3	cells	were	 resuspended,	washed	with	PBS	and	
eventually	fixed	with	70%	ethanol	for	10 min.	The	fixed	cells	were	
then washed twice to prepare them for immunostaining. Briefly, a 
horseradish	peroxidase/AEC	Detection	 IHC	Kit	 (Abcam,	USA)	was	
used for the indirect streptavidin- biotin- peroxidase reaction. A 1:200 
diluted	MMP-	2	monoclonal	antibody	(Invitrogen,	USA,	MA5-	13590)	
or	MMP-	9	monoclonal	antibody	(Invitrogen,	USA,	MA5-	15886)	was	
administered to the cells, followed by incubation overnight at +4°C 
in	the	dark.	AEC	kit	 (Invitrogen,	USA)	was	used	as	a	chromogen	at	
room temperature, and the cell images were captured under a light 
microscope. The average number of immuno- positive cells was cal-
culated by counting the cells at five distinct regions on the samples.

2.6  |  Expression study for RELA/p65, CDH1, 
MMP2 and MMP9 genes

The	aged	NIH/3T3	cells	that	were	collected	were	washed	with	PBS.	
RNA isolation was performed using a commercial kit [MasterpureTM 
RNA Purification (MCR85102, EPICENTRE)]. After spectrophoto-
metric	analysis	(NanoDrop	Eight	Spectrophotometer,	Thermofisher,	
USA)	 to	 determine	 the	 quantity	 and	 quality	 of	 RNA,	 the	 cDNA	
synthesis	 and	 qRT–PCR	 (Qiagen	Quantitect	 SYBR	 Green	 PCR	 Kit	
(QIAGEN))	were	carried	out	using	self-	designed	primer	sets	(Table 1) 

using	Rotor-	Gene	Q	 (Qiagen,	USA).	The	actin-	Beta	gene	was	used	
as the housekeeping gene and the expression analysis was held by 
2−∆∆Ct calculation.

2.7  |  Nuclear extraction preparation of 
NIH/3T3 cells

Nuclear fractions of the NIH/3T3 fibroblasts were extracted with a 
commercial nuclear- cytoplasmic extraction kit (NE- PER Nuclear and 
Cytoplasmic	Extraction	Reagent,	Pierce,	Rockford,	IL,	USA)	accord-
ing to the manufacturer's instructions.

2.8  |  Quantification of NF- κB (p65) DNA- binding 
activity

The	NF-	kB	p65	DNA	binding	activity	was	measured	using	an	ELISA-	
based method through NF- kB p65 Transcription Factor assay kit 
(ab133112; Abcam, UK). In brief, nuclear extracts of NIH/3T3 cells 
were	 incubated	 for	 1 h	 at	 room	 temperature	 on	 a	 96-	well	 plate	
pre-	coated	 with	 a	 double-	stranded	 DNA	 sequence	 containing	 an	
immobilized	NF-	kB	response	element.	NF-	kB,	present	in	nuclear	ex-
tracts, binds to the NF- kB response element and is detected using 
an antibody for NF- kB/p65 as previously described.35 A second-
ary antibody conjugated to HRP is then added and NF- kB activa-
tion	is	measured	with	a	plate	absorbance	reader	at	450 nm	(Thermo	
Scientific	MULTISKAN	GO,	Finland).

2.9  |  Statistical analysis

Experiments were repeated five times. Intergroup comparisons were 
performed	by	ANOVA	and	post	hoc	Tukey's	test.	The	student's	t- test 
was	 applied	 to	 compare	 two	 independent	 groups.	GraphPad	 InStat	
software (version Prism 8.0.2.) was employed for all statistical analy-
ses. A p- value of less than 0.05 was considered statistically significant.

3  |  RESULTS

3.1  |  The effect of met on the viability of the aged 
NIH/3T3 exposed to 50 Hz MF

Trypan blue exclusion assay was used to determine the viability of 
aged	NIH/3T3	cells	exposed	to	50 Hz	MF	after	treatment	with	four	
different	Met	concentrations	(500 μM,	1 mM,	2 mM	and	10 mM).	Cell	
viability exhibited a dose- dependent decrease, with the most pro-
nounced	 inhibition	 observed	 at	 10 mM	Met	 (p < 0.05)	 (Figure 1B). 
The results indicate a dose- dependent decrease in cell viability, 
with	the	highest	inhibition	observed	at	10 mM	Met,	suggesting	that	
high concentrations of Met significantly reduce the viability of aged 
NIH/3T3	cells	under	50 Hz	MF	exposure.

TA B L E  1 Primers	of	genes	RELA/p65, MMP2, MMP9, CDH1 and 
ACTB	for	performing	qRT-	PCR.

Gene Primer Sequence

RELA (P65) Forward AGTGTGTGAAGAAGCGAGACC

Reverse AAATCGGATGTGAGAGGACAG

MMP2 Forward TCATTGGTTACACACCTGACCT

Reverse GGGTATCCATCTCCATGCTC

MMP9 Forward TGTCACTTTCCCTTCACCTTC

Reverse CTCACTAGGGCAGAAACCAAA

CDH1 Forward CTCCAGTCATAGGGAGCTGTC

Reverse CCCAGTCTCGTTTCTGTCTTC

ACTB Forward ATCTGGCACCACACCTTCTAC

Reverse GGTACGACCAGAGGCATACAG
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3.2  |  Met inhibits aged NIH/3T3 cell proliferation 
induced by 50 Hz MFs

The BrdU assay was held to determine the anti- proliferative ac-
tion	 of	 four	 doses	 of	Met	 (500 μM,	 1 mM,	 2 mM	 and	 10 mM).	 A	
24 h-	incubation	 with	 Met	 blocked	 the	 proliferation	 of	 the	 aged	
NIH/3T3	cells,	which	have	been	exposed	to	50 Hz	MF.	When	com-
pared to the Met- free medium, statistically significant inhibition 
was	observed	at	10 mM	Met	concentration	(p < 0.0001)	(Figure 2). 
The	 results	 suggest	 that	 10 mM	Met	 is	 the	most	 effective	 dose	
for inhibiting proliferation in aged mouse fibroblasts exposed to 
50 Hz	MF.

3.3  |  The effect of Met on the MMP- 2 and MMP- 9 
protein expressions of the aged NIH/3T3 exposed to 
50 Hz MF

The immunoreactivities of MMP- 2 and - 9 in the aged NIH/3T3 cells 
exposed	 to	 50 Hz	 MF	 were	 compared	 between	 groups	 with	 and	
without Met administration by immunocytochemical staining. The 
results suggested that MMP- 2 immunopositivity was significantly el-
evated	in	the	group	that	was	exposed	to	50 Hz	MF,	compared	to	the	
control group (p = 0.02).	A	statistically	significant	decrease	in	MMP-	2	
immunopositivity	was	observed	in	the	50 Hz	MF	groups	treated	with	
1 mM,	2 mM	and	10 mM	Met	concentrations	compared	to	the	con-
trol	group,	which	was	exposed	to	50 Hz	MF	but	untreated	with	Met	
(Figure 3A).

Similarly,	MMP-	9	 immunoreactivity	was	 also	 significantly	 in-
creased	 in	 the	NIH/3T3	cell	 group,	which	was	exposed	 to	50 Hz	
MF, compared to the control group (p = 0.0009)	 (Figure 3B). 
Statistical	 evaluation	 of	 H-	score	 results	 (%)	 of	 MMP-	9-	positive	
aged NIH/3T3 cells showed that there was a significant decrease 

in	the	1 mM,	2 mM	and	10 mM	Met	groups	compared	with	the	to	
Met-	free	50 Hz	MF	group	(p < 0.001)	(Figure 3B). The results also 
show	that	a	10 mM	concentration	of	Met	is	an	effective	inhibitory	
dose for MMP 2/9 protein production in aged mouse fibroblasts 
exposed	to	50 Hz	MF	(p < 0.0001).	Met	treatment,	especially	at	a	
concentration	 of	 10 mM,	 significantly	 reduces	 the	 expression	 of	
MMP- 2 and MMP- 9 proteins in aged NIH/3T3 cells exposed to 
50 Hz	MF;	this	suggests	that	Met	may	mitigate	the	pro-	metastatic	
effects of MF exposure.

3.4  |  Met regulates RELA (p65), MMP2/9 and 
CDH1 gene expressions in aged mouse fibroblasts 
exposed to 50 Hz MFs

We	employed	to	quantify	the	mRNA	expression	levels	of	MMP2/9, 
RELA and CDH1	genes	of	the	aged	NIH/3T3	cells	exposed	to	50 Hz	
MF	by	qRT–PCR.	According	to	our	findings,	MMP2/9 expression sig-
nificantly	increased	under	50 Hz	MF,	compared	to	the	control	group	
(p < 0.05)	(Figure 4A). However, the CDH1 expression was downreg-
ulated	under	Met-	free	50 Hz	MF	group.	However,	CDH1	expression	
was	dramatically	upregulated	at	a	high	Met	dose	(10 mM)	compared	
to	the	Met-	free	50 Hz	MF	group	(p < 0.05).	Besides,	MMP	2/9	mRNA	
significantly decreased at two different doses of Met administration 
(2 mM	and	10 mM,	respectively)	under	50 Hz	MF,	compared	to	the	
Met-	free	50 Hz	MF	group	(p < 0.05).

The RELA/p65 expression significantly elevated in the Met- 
free	 50 Hz	 MF	 group	 compared	 to	 the	 control	 group	 (p < 0.05).	
Conversely,	 at	50 Hz	MF,	 a	high	dose	of	Met	 (10 mM)	 significantly	
decreased RELA/p65 expression (p < 0.05)	(Figure 4A).

The	 findings	 indicate	 that	 10 mM	Met,	 in	 particular,	 downreg-
ulates the expression of the RELA/p65 and MMP2/9 genes, while 
upregulating the expression of CDH1.

F I G U R E  2 Representative	micrographs	and	statistical	analysis	of	the	distribution	of	anti-	BrdU	immunocytochemical	staining	in	
aged	mouse	fibroblasts	exposed	to	50 Hz	MF	and	in	four	different	dosages	of	metformin	(500 μM,	1 mM,	2 mM	and	10 mM).	Original	
magnification, ×40.	***p = 0.0009;	****p < 0.0001.	Data	were	expressed	as	the	mean ± SD	from	five	independent	experiments.
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3.5  |  Inhibition of NF- kB/p65 DNA binding activity 
by Met in aged NIH/3T3 cells exposed to 50 Hz MF

ELISA	was	used	to	evaluate	the	DNA-	binding	activity	of	NF-	kB/p65.	
The activity of NF- kB/p65 was significantly elevated in NIH/3T3 
aged	mice	fibroblasts	after	1 h	of	exposure	to	50 Hz	MF	(p < 0.05).	
The	results	suggested	that	Met	treatment	(500 M,	1 mM,	2 mM	and	
10 mM)	 suppressed	NF-	kB/p65	 activity	 in	 aged	mouse	 fibroblasts	
exposed	to	50 Hz	MF	at	1 h	(Figure 4B). Met effectively suppresses 
the DNA- binding activity of NF- kB/p65 in aged NIH/3T3 cells after 
50 Hz	MF	exposure,	with	the	most	significant	suppression	observed	
at	 10 mM	 Met	 concentration,	 suggesting	 a	 potential	 mechanism	
for	 reducing	detrimental	effects	of	50 Hz	MF	by	 regulating	NF-	κB 
activity.

4  |  DISCUSSION

The aging process, which is a well- established risk factor for various 
disorders, such as cancer, is associated with a homeostatic imbalance, 
including genotoxic and oxidative stress.36	Some	cell-	based	and	epide-
miological	studies	have	suggested	that	50–60 Hz	MFs-	induced	oxida-
tive and genotoxic stress increases the risk of developing cancer.2–6 
Carcinogenesis is a multi- stage process that gradually transforms nor-
mal cells into malignant cells. These stages involve the maintenance of 
proliferative signalling, the evasion of growth suppressors, the resist-
ance to cell death, the attainment of replicative immortality, the acti-
vation of invasion and metastasis and the induction of angiogenesis. 
These hallmarks collectively define the critical processes that drive the 
progression from normal cells to cancer.37 In our previous research, we 

F I G U R E  3 (A)	The	micrograph	images	showing	the	effects	of	metformin	(500 μM,	1 mM,	2 mM	and	10 mM)	treatment	on	MMP-	2	protein	
expressions	in	aged	mouse	fibroblast	exposed	to	50 Hz	MF.	Original	magnification,	×40.	*p < 0.05,	**p < 0.001;	***p < 0.0001.	(B)	The	
micrograph	images	showing	the	effects	of	metformin	(500 μM,	1 mM,	2 mM	and	10 mM)	treatment	on	MMP-	9	protein	expressions	in	aged	
mouse	fibroblast	exposed	to	50 Hz	MF.	Original	magnification,	×40,	**p < 0.001;	***p < 0.0001.	Data	were	expressed	as	the	mean ± SD	from	
five independent experiments.
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    |  7 of 10SOYDAS et al.

demonstrated that the expression of MMPs in both primary breast 
cancer cells and the MCF- 7 cell line is regulated by the transcription 
factor NF- κB. NF- κB is a pivotal factor in carcinogenesis, playing es-
sential roles not only in inflammation but also in key processes such as 
metastasis, cell proliferation, cell viability and invasion.25,38

Excessive activation of the NF- κB signalling pathway is a prev-
alent	 feature	 in	 diverse	 tumour	 tissues.	 Consequently,	 studies	 fo-
cused on targeting this pathway for cancer therapy have become a 
significant area of research. Recently, NF- κB inhibitors have been 
widely employed to reduce cancer metastasis by suppressing the ex-
pression of several prometastatic genes. Moreover, these drugs may 
also inhibit the metastasis of other cancer types, including prostate, 
brain, melanoma, ovarian and pancreatic cancers.39 Met, an NF- κB 
inhibitor that has demonstrated clinical safety for the treatment of 
type 2 diabetes mellitus (T2DM), has garnered attention from oncol-
ogists as a potential cancer therapeutic. This antioxidant appears to 
be a promising anti- cancer and anti- aging agent.22,32,33

Excessive proliferation of fibroblasts is known to be a criti-
cal factor in carcinogenesis; however, the molecular machinery of 

how	50 Hz	MF	impairs	cell	growth	and	how	Met	fixes	such	harmful	
conditions have not yet been elucidated.40 In this study, we demon-
strated	 that	50 Hz	MF	significantly	 increased	 the	cell	proliferation	
and	 viability	 of	 aged	NIH/3T3	mouse	 fibroblasts.	 Some	 research-
ers have shown an increase in the proliferation of both cancer cells 
and normal cells after exposure to ELF- MF. In line with our findings, 
previous	studies	have	reported	that	exposure	to	0.5–5 mT	MF	pro-
motes cell growth in various cell lines, including prostate cancer cell 
lines, human epidermal stem cells, WI- 38 diploid fibroblasts, rat- 1 
fibroblasts and HL- 60 leukaemia cells.41–43 In this context, Wolf and 
collaborators showed that exposure of HL- 60 leukaemia cells and 
rat	fibroblasts	to	50 Hz	(0.5–1.0	mT)	ELF-	MF	affected	cell	prolifera-
tion and DNA damage through the action of free radical species.43 
According	 to	 our	 findings,	 this	 50 Hz	 MF-	mediated	 promotion	 of	
cell	proliferation	was	under	the	control	of	24 h	Met	administration	
in	 a	 concentration-	dependent	 manner.	 Moreover,	 the	 50 Hz	 MF	
significantly increased the viability of the aged NIH/3T3 fibroblast, 
whereas the Met administration, in a dose- dependent manner, re-
stored the number of viable cells. Many studies have suggested that 

F I G U R E  4 (A)	Effects	of	metformin	(500 μM,	1 mM,	2 mM	and	10 mM)	treatment	on	RELA	/p65,	CDH1,	MMP2	and	MMP9	expression	
levels	in	aged	mouse	fibroblast	exposed	to	50 Hz	MF.	*p < 0.05.	Data	were	expressed	as	the	mean ± SD	from	five	independent	experiments.	
(B)	Effects	of	metformin	(500 μM,	1 mM,	2 mM	and	10 mM)	treatment	on	NF-	kB	(p65)	DNA	binding	activity	in	aged	mouse	fibroblast	exposed	
to	50 Hz	MF.	*p < 0.05,	**p < 0.01.	Data	were	expressed	as	the	mean ± SD	from	five	independent	experiments.
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Met may limit the growth of many tumour cells.25,32,38 Our previous 
in vitro study using primary breast cancer cells (PBCCs) showed that 
Met can inhibit cell proliferation through an AMPK- alpha indepen-
dent mechanism in breast cancer cells.25

Numerous age- related diseases, including cancer, have been linked 
to the overactivation of NF- κB, a crucial transcription factor.22,25,38 
Our	previous	 research	has	emphasized	 the	pivotal	 role	of	NF-	κB in 
both skin aging and breast cancer.23–25 To explore the potential impact 
of ELF- MF on NF- κB activity in aging cells, we investigated its DNA- 
binding capacity in aged NIH/3T3 cells. Our findings revealed that ex-
posure	to	50 Hz	ELF-	MF	significantly	 increased	NF-	κB DNA- binding 
activity in these cells. Following the present results, Wolf et al., have 
suggested	that	50 Hz	 low-	frequency	MF	triggered	the	DNA-	binding	
activity of NF- kB (p65) in Rat- 1 fibroblasts, WI- 38 diploid fibroblasts 
and HL- 60 leukaemia cells.43 However, the administration of Met, an 
NF- κB inhibitor, effectively counteracted this effect, suggesting its 
potential therapeutic benefits as an anti- aging and anti- cancer agent.

Accumulating evidence indicates that NF- kB signalling is re-
quired	for	EMT	in	cancerogenesis.27,44 Cancer cells undergo EMT, a 
process	characterized	by	the	loss	of	proteins	that	support	cell–cell	
contact,	such	as	E-	cadherin.	This	is	accompanied	by	the	acquisition	
of mesenchymal markers, including vimentin and metalloproteinases 

such as MMP- 2 and MMP- 9, which enhance cell motility and inva-
sion. Furthermore, NF- κB has been implicated in the regulation 
of EMT marker genes, including CDH1, MMP2 and MMP9.27,28 We 
showed	that	a	high	dose	of	Met	administration	(10 mM)	for	a	24-	h	
period downregulated RELA and MMP2/9 expressions, while upreg-
ulating	CDH1	expression	via	NF-	kB	activity	in	the	50 Hz	MF	exposed	
aged NIH/3T3 cells. A significant reduction in MMP- 2/9 expression 
was	observed	at	the	10 mM	Met	dose,	as	 indicated by both immu-
nocytochemistry and real- time PCR. Previous research within me-
lanocytic lineages has demonstrated Met's ability to inhibit EMT, 
upregulate E- cadherin expression, and downregulate N- cadherin at 
both the gene and protein levels.45 In a migration study involving 
the	MDA-	MB-	231	 cell	 line,	Met	 at	 a	 concentration	of	 20 mM	was	
found to suppress the expression of MMP- 2 and MMP- 9.46 Our ear-
lier studies align with these findings, revealing a similar decrease 
in MMP- 2 and MMP- 9 expression at high doses of Met in MCF- 7 
cells. These collective results are consistent with previous reports 
conducted	by	Sharma&Kumar	(2018)	and	Besli	et	al.	(2020).38,45 It is 
encouraging to compare our findings with those found by Patruno 
et al., who found induced expression of MMP- 9 in Hacat keratino-
cyte	cells	at	50 Hz	MF	exposure.47 In another paper, Zhu et al., re-
ported	that	50 Hz	MF	exposure	time-	dependently	promoted	MMP-	2	

F I G U R E  5 A	schematic	diagram	
showing the mechanism by which in vitro 
protective effects of metformin against 
carcinogenesis are potentially induced 
by	a	50 Hz	magnetic	field	in	aged	mouse	
fibroblasts.
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    |  9 of 10SOYDAS et al.

expression in cultured human fetal scleral fibroblasts, as indicated 
by both Western blot and RT- PCR analysis.48 Therefore, this study 
suggests	that	Met	may	counteract	the	detrimental	effects	of	50 Hz	
MF on aged NIH/3T3 fibroblasts by regulating NF- κB activity and 
the expression of, CDH1, MMP2/9 and RELA.

5  |  CONCLUSION

In	conclusion,	our	study	suggests	that	a	50 Hz	uniform	MF	promotes	
the aged mouse fibroblast cell viability, proliferation and expression 
of MMP genes through an elevated NF- kB activity while decreas-
ing the expression of E- cadherin. Met may mitigate the detrimental 
effects	 triggered	 by	 this	 50 Hz	MF	 on	 the	 aged	mouse	 fibroblasts	
by modulating the EMT entities and NF- kB, which possibly plays a 
crucial	role	in	the	development	of	50 Hz	MF-	induced	carcinogenesis	
and hence might be a future therapeutic candidate for treating MF- 
induced cancer. The findings presented in this study demonstrate the 
potential impact of ELF- EMF on the carcinogenic process, highlight-
ing the importance of further investigating its role in this complex 
phenomenon. Additionally, our results suggest that Met, an NF- κB in-
hibitor,	may	mitigate	the	adverse	effects	of	50 Hz	MF	on	aged	mouse	
fibroblasts by regulating the expression of MMP 2/9 and E- cadherin 
(Figure 5). Both in vitro and in vivo evidence supports a link between 
exposure to ELF- EMF and DNA strand breaks. However, conflicting 
findings regarding the therapeutic effects of these fields underscore 
the need for a more comprehensive understanding of their biological 
mechanisms. This study has several limitations. First, the results are 
limited to a single cell line level, so to understand the overall biologi-
cal effects of ELF- EMFs, the effect of a uniform ELF- EMF should be 
further investigated in various human cell types and in vivo models. 
Evaluation of additional primary cell lines, along with a wider exami-
nation	of	aging	and	cancer	markers,	is	necessary.	Second,	the	exist-
ing	 literature	on	 the	 impact	of	 low-	frequency	electroMFs	presents	
conflicting	results.	Therefore,	the	generalizability	of	our	preliminary	
findings	is	limited	and	requires	cautious	interpretation.
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