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Abstract: The periodic signals that have predictable and deterministic characteristics are used in the analysis and modelling of
dynamical systems in diverse fields. These signals can be detected as the weak signals within the time series obtained from the
measurable processes of dynamical systems. The Duffing oscillator is effective in detecting weak periodic signals with a very
low signal-to-noise ratio. In this study, the authors present a method to automate the weak periodic signal detection of the
Duffing oscillator using a quantitative index for the classification of the periodic and non-periodic signals. In this method, the
authors use the wavelet scale index as the quantitative index in the classification of signals. Thus, they are able to plot the
wavelet scale index spectrum of the Duffing oscillator where the frequency values of the weak periodic signals correspond to
near-zero wavelet scale index parameters. First, the authors perform simulations using the method and detect weak periodic
signals embedded in noise. Then, they employ two electroencephalogram signals to demonstrate the feasibility of the proposed
method in the empirical data. Lastly, they compare the method to the periodogram power spectral density estimate based on
fast Fourier transform.

1 Introduction
The periodic or quasi-periodic signals can be detected as the weak
signals in the time series obtained from the measurable processes
of dynamical systems such as electroencephalogram (EEG) signals
in the brain [1–3] and seismic signals in earthquakes [4–6]. The
weak periodic signals [7–10] have a very low signal-to-noise ratio
(SNR), thus, have low amplitudes. The weak periodic signals that
have predictable and deterministic characteristics are used in the
analysis of the dynamical systems, especially in the processing of
non-stationary signals in various applications such as the
development of biomedical device technology.

The Duffing oscillator is widely used for the detection of weak
periodic signals in intense noise. The weak periodic signals within
the external forcing input term in the Duffing oscillator are
detected by observing the transition of the oscillator from a chaotic
state to periodic state. When the Duffing oscillator, in the critical
edge of chaos, is stimulated by the weak periodic signals embedded
in strong background noise, the Duffing oscillator jumps to a
periodic state [11–20]. This conventional method of detecting weak
periodic signals is based on analysing the change in the state space
of the Duffing oscillator manually which is not practical and time-
consuming. In this study, we propose a new method to automate
the detection of weak periodic signals, based on the wavelet scale
index which numerically identifies the state transition of the
Duffing oscillator.

The wavelet scale index is a recently introduced method, based
on the wavelet analysis. It is used for measuring the degree of non-
periodicity of a signal [21, 22]. One can numerically separate the
periodic and non-periodic states of the Duffing oscillator using the
wavelet scale index [23–26]. Hence, the classification of the
periodic and non-periodic signals by the wavelet scale index allows
the conventional method to be automated in practice. Thus, the
wavelet scale index will allow performing the weak periodic signal
search without the need to manually analyse the state space
diagrams of the Duffing oscillator.

In this paper, we apply this automated method to detect weak
periodic signals embedded in noise and in empirical signals. For
this, the signals are used as external forcing input in the Duffing

oscillator. Then, the wavelet scale index method is computed from
the time series of an array of Duffing oscillators. The paper is
organised as follows. In Section 2.2, we justify using the wavelet
scale index as the quantitative index in the weak periodic signal
detection. Thus, we analyse the wavelet scale index spectrum of
the Duffing oscillator and compare the results with a different
quantitative index, the maximum Lyapunov exponent. We show
that the wavelet scale index is more effective than the maximum
Lyapunov exponent in the detection of the transition to the periodic
state from the critical edge of chaos for the Duffing oscillator. As
the wavelet scale index parameter goes to zero in every periodic-
stable state of the Duffing oscillator. In Section 3, we explain the
application of the proposed method in detail. In Section 3.1, we test
and verify the method by performing simulations where the results
demonstrate the capability of this automated method for detecting
weak periodic signals embedded in noise. We also compare the
graphical results obtained with the method to the periodogram
power spectral density estimate based on fast Fourier transform
(FFT). Furthermore, in Section 3.2, we describe the application to
the empirical data where we carry out the proposed method of
weak periodic signal detection effectively in EEG signals.

Data: EEG signals used in this work were obtained from two
patients; the EEG data was approved by Celal Bayar University
Medical Faculty Ethics Committee in 2009.

2 Theoretical basis
2.1 Detection method of weak periodic signals by utilising the
Duffing oscillator

Duffing equation, in its simple form, can be expressed as [11, 15,
20, 27, 28]:

d2
x

dt
2 + 0.5

dx

dt
− x + x

3 = γcos t + input (1)

where γcos t  is the reference signal with the amplitude γ. The
‘input’ term represents the external forcing input to the oscillator.
Weak periodic signals within the input signal are low amplitude
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signals in comparison to the reference signal [11, 15, 23]. Wang et
al. [11] first described the conventional method of detecting weak
periodic signals within the signals that are used as external forcing
input in the Duffing equation. In this conventional method, the
state-space diagrams are plotted manually to detect the transition of
the Duffing oscillator from a chaotic state to a periodic state.

For the weak periodic signal detection, frequency
transformation is performed by changing the frequency of the
reference signal in (1). Assuming y = dx t /dt = ẋ t , the time
variable in (1) is defined as t = ω0τ, where ω0 is the reference
angular frequency. Therefore (1) yields [11]:

dx

dτ
= ẋ τ = ω0y (2)

dy

dτ
= ẏ τ = ω0 −0.5y + x − x

3 + γcos ω0τ + input τ

The input signal can be defined as

input τ = s τ + n τ (3)

where n τ  is the noise. Let us assume s τ = acos ωτ  is the weak
periodic signal, where ω is the angular frequency and a is the
amplitude of the weak periodic signal.

The numerical solutions of the Duffing (2) can be acquired by
the fourth-order Runge–Kutta method [29], using a time step size
of h = 0.1 for 0 ≤ τ ≤ i ⋅ h, where i is the iteration number, and the
initial values of x 0 = 0 and ẋ 0 = 1. The state space is plotted
for the numerical solutions, x τ , and the derivatives of the
numerical solutions, ẋ τ .

The period of the orbits in a large-scale periodic state space of
the Duffing oscillator is T = 100 [11, 12], 0 ≤ τ ≤ mT

(m = 1, 2, 3, …). The sampling frequency of the discrete Duffing
oscillator is determined as f D = 100/h. For example, when the step
size is selected as h = 0.1, the sampling frequency of the Duffing
oscillator, f D is calculated as 1000 Hz. Since the cosine function is
a double function, the weak periodic signal search of the Duffing
oscillator can only be possible in the frequency range of 0–500 Hz.
Generally, the weak periodic signal search on the frequency
domain is performed by adjusting the sampling frequency of the
Duffing oscillator, f D.

The Duffing oscillator without the external forcing input
remains in a large-scale periodic state if the amplitude (γ) of the
reference signal is greater than or equal to the bifurcation value, γc

[11, 12]. For detecting a weak periodic signal embedded in noise,
the amplitude of the reference signal (γ) is adjusted to the critical
chaotic state space of the Duffing oscillator as shown in Fig. 1a
before including the input signal in (2). Then, the reference
amplitude (γ) is fixed and the angular frequency of the reference
signal (ω0) is changed for the frequency scanning. In the case that
the total periodic amplitude in (2) is γ + a ≥ γc; the Duffing
oscillator only goes to periodic-stable state as shown in Fig. 1b,
when the angular frequency of the reference signal and the periodic
signal in the input term is equal to each other (ω = ω0) [11–15, 27].

Fig. 1a shows the critical chaotic state space of the Duffing
oscillator without the external forcing input for γ = 0.825, ω0 = 1
and h = 0.1. When the reference amplitude (γ) in the critical
chaotic state is increased by 0.001, the oscillator leaps to a large-
scale periodic state for γc = 0.826 as shown in Fig. 1b. The
bifurcation value for the reference signal, γc depends on its angular
frequency, ω0 and the step size, h = 100/ f D.

We used Matlab in all applications in this work. We performed
a simulation to demonstrate the high sensitivity of the Duffing
oscillator for the detection of weak periodic signals with very low
SNR [11–15, 23].

Thus, we added the input signal term in (3) while the oscillator
is in a critical chaotic state for γ = 0.825, as shown in Fig. 1a. As
a result, the Duffing oscillator jumped to a periodic-stable state as
shown in Fig. 2a. In the simulation, the weak periodic signal term
was determined as s τ = 0.001cos ωτ , with ω = ω0 = 1. The
noise term was determined as n τ = σ ⋅ randn τ ; where randn τ

is a Matlab function which produces a normally distributed random
number with 0 mean and variance 1 for each time τ. σ is the noise
multiple which was selected as 0.03 and 0.035, respectively as
shown in Fig. 2. The results in Fig. 2 show that the reliable weak
periodic signal detection is possible only when σ ≤ 0.03.
Therefore, the SNR threshold for the analysed signal must be
higher than −32.55 db

SNR = 10log10 0.5
a

2

σ
2 = 10log10 0.5

0.001 2

0.03 2 = − 32.55

db
(4)

2.2 Wavelet scale index analysis of the Duffing oscillator

The wavelet scale index was first presented by Benitez et al. [21,
22]. It gives quantitative information on the level of non-
periodicity of signals. The wavelet scale index is based on the
continuous wavelet transform (CWT). The CWT of a function f t

is formulated as [30]

W f u, s = f , ψu, s = ∫
−∞

+∞

f t ψu, s
∗

t dt (5)

The CWT allows us to obtain the frequency components of the
function f t  corresponding to scale s and time location u, thus
providing a time–frequency decomposition of f t .

The scalogram function of f t , is defined as:

Fig. 1  State space of the Duffing oscillator system without external forcing
input
(a) Oscillator is in the critical chaotic state space for the amplitude value of
γ = 0.825, (b) Oscillator jumps into a large-scale stable-periodic state for the
amplitude value of γc = 0.826

 

Fig. 2  Measuring the high sensitivity of the Duffing oscillator in the
detection of the weak periodic signals with very low SNR
(a) Large scale stable-periodic state of the oscillator is maintained for σ = 0.03, (b)
Large scale stable-periodic state of the oscillator is deformed for σ = 0.035.
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S s = W f u, s = ∫
−∞

+∞

W f u, s
2du

1/2

(6)

Here, the scalogram function represents the energy of the CWT of
f t  at each scale. For the signal f to be analysed in practical terms,
a finite time interval must be considered. Therefore, the inner
scalogram of the signal f at s scale is written as [21]:

S
inner

s = W f u, s J s = ∫
c s

d s

W f u, s
2du

1/2

(7)

Here J s = c s , d s  is the maximum subinterval in the finite
time interval where the wavelet function is supported. To achieve a
wavelet scale index parameter independent of the scale, the inner
scalogram is normalised as follows [21]:

S̄
inner

s =
S

inner
s

d s − c s
1/2 (8)

The definition of the wavelet scale index of a signal at scale range
s0, s1  is

iscale =
S̄

inner
smin

S̄
inner

smax

(9)

where smax is the smallest scale that gives the normalised inner
scalogram its maximum value between the scales of s0  and s1. In
addition, smin is the smallest scale that gives the normalised inner
scalogram its minimum value between the scales of smax and 2s1.
The wavelet scale index parameters can vary between zero and
one, 0 ≤ iscale ≤ 1. When the computed wavelet scale index
parameter is zero or very close to zero, it indicates that the signal is
periodic. Also, when the wavelet scale index parameter is close to
one, it refers that the signal is highly non-periodic [21, 22].

We calculated the wavelet scale index parameter from the time
series of x τ  that were obtained from the solutions of the Duffing
equation with no external forcing input. Fig. 3a shows the wavelet
scale index spectrum of the Duffing chaotic oscillator, plotted by
fixing ω as ω0 = 1 and changing the amplitude (γ) of the reference

signal by the increment of 0.001 in the range of 0.700 and 0.950. 
The wavelet function of Haar with the scale range of s0 = 1 and
s1 = 512 was used for computing the wavelet scale index
parameters. Fig. 3a shows that the wavelet scale index parameters
converge to zero when the system stays in the periodic state for
γ ≥ 0.826. In addition, the wavelet scale index parameters are
higher than zero when the system is in the chaotic state for
γ ≤ 0.825. Hence, the wavelet scale index method is capable of
numerically identifying the transition between chaotic and periodic
states of the oscillator. Since the wavelet scale index parameters
converge to zero in all periodic oscillators, the method can
distinguish periodic signals from non-periodic or chaotic signals.

The maximum Lyapunov exponent (λ) quantitatively
determines whether the system is chaotic (λ > 0) or periodic
(λ ≤ 0). Therefore, the state spaces of the Duffing chaotic oscillator
can also be identified numerically by the maximum Lyapunov
exponent [31, 32]. However, as shown in Fig. 3, the maximum
Lyapunov exponent is not as sensitive as the wavelet scale index in
the detection of the transition to the periodic state from the critical
edge of chaos in the Duffing oscillator. The values of the estimated
maximum Lyapunov exponent for the periodic region are zero or
negative, λ ≤ 0, However, for γc = 0.826, the maximum Lyapunov
exponent value is slightly above zero, λc = 0.06347. Therefore, the
method lacks sensitivity during the transition of the oscillator from
the chaotic state to the periodic state. For this reason, we preferred
the wavelet scale index instead of the maximum Lyapunov
exponent as a quantitative index in detecting weak periodic signals.

3 Proposed method
3.1 Weak periodic signal detection by the wavelet scale
index spectrum of the duffing oscillator

In conventional weak periodic signal detection practices, weak
periodic signals with unknown frequency values in an input signal
are identified by observing the transition of the Duffing oscillator
from a chaotic state to a periodic state. For this, the state space
diagrams of the oscillator are analysed by manually sweeping the
angular frequency (ω0) of the reference signal in (2) [11–20, 27],
which is evidently impractical. We devised an effective method to
improve the existing process using the wavelet scale index analysis
of the Duffing oscillator.

The wavelet scale index method enables us to distinguish the
periodic states from the non-periodic states by quantitative means.
As near-zero wavelet scale index values indicate the periodic
oscillations of the system, iscale → 0. If the Duffing oscillator jumps
to a periodic-stable state, the wavelet scale index of the Duffing
oscillator will be very close to zero. Hence, a weak periodic signal
with an unknown frequency can be detected simply by tracking the
values of the wavelet scale index–frequency graph. This method of
combining the wavelet scale index and the Duffing oscillator
proves to be more effective in searching weak periodic signals
compared to plotting the state space of the Duffing oscillator for
each frequency. The weak periodic signals can be detected by using
the wavelet scale index–frequency spectrum graph of the Duffing
oscillator, similar to FFT. Here, the frequency values of the weak
periodic signals correspond to near-zero values of the wavelet scale
index in the spectrum graph. Therefore, the proposed method will
automatically search weak periodic signals without the need to
analyse the state space diagrams of the Duffing oscillator. The
simulation example of the proposed method is given below.

The weak periodic signals were formed from a T-periodic
function, τ ∈ 0, T , s τ = ∑n = 1

N
Ancos(2π f nτ /T). Where An is the

signal's nth amplitude, f n is the signal's nth frequency. The time
step size h was used to obtain a discrete signal from the continuous
s τ  function, 0 ≤ τ ≤ i . h, where i is the iteration number. Here,
the sampling frequency of the discrete s τ  function was calculated
as f s = T /h.

Fig. 4a shows the weak periodic signals (10) with frequency
values of 10, 17, 25 and 35 Hz in the period, T = 100. For the
discrete time τ, the time step size, h = 0.1 and the iteration,
i = 10, 000 was used

Fig. 3  Duffing oscillator without external forcing input stays in the
periodic state for the reference amplitude values of γ ≥ γc = 0.826
(a) Wavelet scale index spectrum of the Duffing oscillator. The wavelet scale index
parameters converge to zero for the amplitude values of γ ≥ γc = 0.826,  iscale → 0, (b)
Maximum Lyapunov exponent spectrum of the Duffing oscillator. The maximum
Lyapunov exponent takes zero or negative values for the amplitude values of
γ > 0.891
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s τ = 0.002cos 2π10
τ

100
+ 0.003cos 2π17

τ

100

+0.004cos 2π25
τ

100
+ 0.005cos 2π35

τ

100

(10)

Input signal, input τ = s τ + n τ , consists of the weak periodic
signals submerged in noise. n τ = σ . randn τ , is the noise term
where randn τ  is a Matlab function which produces a normally
distributed random number with 0 mean and variance 1 for each
time τ. σ is the noise multiplier. Figs. 5a and 6a show the input
signals consisting of the weak periodic signals and the noise for σ 
= 0.005 and σ = 0.03, respectively. 

d2
x

dt
2 + 0.5

dx

dt
− x + x

3 = 0.825cos ω0τ + input τ (11)

Frequency values of the weak periodic signals were detected
automatically within these signals that are used as external forcing
input in the Duffing (11). For this, the frequency scanning was

carried out in the range of 0.50 ≤ ω0 ≤ 2.83
(7.96 Hz ≤ f ≤ 45.1 Hz). The wavelet scale index was applied to
the time series of x τ  that were obtained from (11) by fixing the
reference amplitude to γ = 0.825. Here, the wavelet function of
Haar with the scale range of s0 = 1 and s1 = 512 was used for these
calculations. Figs. 4c, 5c and 6c show the wavelet scale index
spectrum of the Duffing oscillator for this frequency scanning. The
wavelet scale index parameters closest to zero show the presence
of weak periodic signals within the input signal. The weak periodic
signals detected by this method can be observed in Figs. 4c, 5c and
6c. The method was also compared with the power spectra which
can hardly detect weak periodic signals with low noise (σ = 0.005)
as shown in Fig. 5b and appears short of detecting weak periodic
signals in high noise (σ = 0.03) as shown in Fig. 6b.

As demonstrated in Fig. 7, in the weak periodic signal
detection, the sampling frequency of the oscillator, f D must be
equal to the sampling frequency of the input signal, f input. As x τ ,
cos ω0τ  and input τ  are dependent on τ in the Duffing (11),
0 ≤ τ ≤ i . h, where h is the time step size, and i is the iteration
number. Here, to provide equality, f input = f D = 100/h, the time
step size of the Duffing oscillator was determined as
h = 100/ f input.

The input signal in (12) was formed by the weak periodic
signals with frequency values of 8, 12 and 14 Hz, under the
conditions that T = 200, h = 0.4 and i = 5000. The sampling
frequency of the input signal was calculated as
f input = 200/0.4 = 500 Hz.

input τ = 0.001cos 2π8
τ

200
+ 0.002cos 2π12

τ

200

+0.003cos 2π14
τ

200

(12)

Fig. 7a shows the time series of the input signal with the sampling
frequency of f input = 500 Hz. The time step size of the Duffing
oscillator was determined as h = 100/ f input = 100/500 = 0.2, and
the sampling frequency of the Duffing oscillator was calculated as
f D = 100/0.2 = 500 Hz. Fig. 7b shows the weak periodic signals
detected by the Duffing oscillator with the sampling frequency of
f D = 500 Hz. When the sampling frequency of the Duffing
oscillator was increased to f D = 1000 Hz,
h = 100/ f D = 100/1000 = 0.1, the weak periodic signal detection
was not successful as shown in Fig. 7c.

3.2 Detecting weak periodic signals in the empirical data

In this section, the experimentally measured time series of a signal
were used as external forcing input in the Duffing (2). First, this
empirical data was multiplied with a suitable gain coefficient
(10n, n = … − 2, − 1, 0, 1, 2…) to scale the amplitude of the input
signal to the reference signal [15, 23]. As the Duffing oscillator
collapses when the amplitude magnitudes of the input signal are
too large compared to the reference signal, and the Duffing
oscillator is not stimulated when the amplitude magnitudes are too
small. The root mean square (rms) of the signals were calculated to
determine the gain coefficient for the condition of
10n input rms < γ(cos ω0τ )rms. For the EEG signals that we used as
the empirical data in this work, the limit of the scaling was
expressed as

0.01 <
10n input rms

0.707γ
< 0.1 (13)

Second, the sampling frequency of the Duffing oscillator was set
equal to the sampling frequency of the input signal, f D = f input. As
a result, the step size of the Duffing oscillator was determined as
h = 100/ f input.

EEG signals recorded by the electrodes placed on the scalp are
known to be contaminated by various types of background noise.

Fig. 4  Wavelet scale index spectrum of the Duffing oscillator system with
external forcing input signal, and periodogram power spectral density of
the input signal
(a) Input τ  represents the weak periodic signals with the frequency values of 10, 17,
25 and 35 Hz, (b) Periodogram power spectral density estimate for the input signal, (c)
Wavelet scale index spectrum of the Duffing oscillator: the frequency values of the
weak periodic signals that are used as external forcing input in the Duffing equation
correspond to near-zero wavelet scale index parameters in the graph

 

Fig. 5  Wavelet scale index spectrum of the Duffing oscillator system with
external forcing input signal, and periodogram power spectral density of
the input signal
(a) Input τ  represents the weak periodic signals in intense noise with the frequency
values of 10, 17, 25 and 35 Hz, σ = 0.005, (b) Periodogram power spectral density
estimate for the input signal, (c) Wavelet scale index spectrum of the Duffing
oscillator: the frequency values of the weak periodic signals that are used as external
forcing input in the Duffing equation correspond to near-zero wavelet scale index
parameters in the graph
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The EEG signals in Figs. 8a and 9a were recorded form the scalp
of two patients with the sampling rate ( f EEG) of 250 Hz [23]. 

For the application to the empirical data, the Duffing (1) can be
expressed as

d2
x

dt
2 + 0.5

dx

dt
− x + x

3 = γcos ω0τ + input τ EEG (14)

Where the sampling frequency of the Duffing oscillator was
selected as f D = 100/h = 100/0.1 = 1000 Hz. According to
f D = f input, the sampling frequency of the input signal was set to
f input = 4 f EEG = 4 × 250 = 1000 Hz. Next, the frequency values
of the weak periodic signals, detected in the EEG signals were
divided by 4, f input/ f EEG.

The epileptic and non-epileptic EEG time series were scaled to
fit the reference signal in (14), inputEEG = 10n EEG Signals . For
this, the rms values of the EEG signals were calculated as
epileptic EEG rms = 2320 μV and

nonepileptic EEG rms = 218 μV. According to the inequality (13),
the time series were multiplied by gain coefficients of 10−5 and
10−4, respectively, as shown in Figs. 8b and 9b. The amplitude of
the reference signal in (14) was set to γ = 0.8254, (γc = 0.8255).

The angular frequency scanning was carried out by the time
step of 0.001 in the interval of 1 ≤ ω0 ≤ 1.319. The expression of
the frequency of the Duffing oscillator in terms of the angular
frequency is f = 100ω0/2π. Thus, the selected angular frequency
interval corresponds to the frequency values between 15.92 and
21.0 Hz. The wavelet scale index values of the Duffing oscillator in
(14) were computed for this frequency range. Here, the Haar
wavelet function with the scales between s0 = 1 and s1 = 512 was
used. Figs. 8d and 9d show the wavelet scale index–frequency
graphs of the Duffing oscillator using (14). In these graphs, the
wavelet scale index parameters with near-zero values indicate the
frequency values of the weak periodic signals [2, 3, 15, 23, 33].
The weak periodic signal search was carried out for
f D = f input = 1000 Hz. For the EEG signals recorded with the
sampling frequency of f EEG = 250 Hz, the frequency values of the
weak periodic signals were divided by 4; Fig. 8d shows the
frequency values of the weak periodic signals in the epileptic EEG
signals which are 16.84/4 = 4.21 and 17.53/4 = 4.38 Hz. Fig. 9d
shows the frequency values of the weak periodic signals in the non-
epileptic EEG signals which are 16.38/4 = 4.1, 17.62/4 = 4.4 and
19.44/4 = 4.86 Hz. The method was also compared with the power
spectral density estimate of the EEG signals as shown in Figs. 8c
and 9c.

 3.2.1 Measuring the amplitude of a weak periodic signal in
the empirical data: Using the Duffing oscillator, the amplitude
magnitude (a) of a weak periodic signal in the empirical data can
be measured by changing the reference signal amplitude (γ) while
the angular frequency (ω0) is kept constant. When the total periodic
amplitude in (14) is greater than or equal to the bifurcation value of
the reference signal amplitude, γ + a ≥ γc, the Duffing oscillator
remains in the large-scale periodic state. Therefore, by fixing the
reference angular frequency (ω0) to a detected weak periodic signal
frequency, and the reference signal amplitude (γ) is decreased to a
certain value where the large-scale periodic state of the Duffing
oscillator starts to deform. Thus, the amplitude value of the weak
periodic signal is determined as a = γc − γ [15, 23].

In Section 3.2, we selected the reference signal amplitude and
the bifurcation value as γ = 0.8254 and γc = 0.8255, respectively.
Also, we found the frequency of the weak periodic signal as
16.84 Hz (ω0 = 1.058) in the epileptic EEG signal for the sampling
frequency of the input signal, f input = 1000 Hz. To measure the
amplitude value of the detected weak periodic signal, the reference
signal amplitude value (γ) was decreased by keeping the reference
angular frequency constant at ω0 = 1.058 in the Duffing (14). The
large scale stable-periodic state of the Duffing oscillator deformed
for the reference signal amplitude of γ = 0.8243. As a result, the
amplitude value of the weak periodic signal was calculated as
a = γc − γ = 0.8255 − 0.8244 = 0.0011. The real value of the weak
periodic signal amplitude a was found by dividing with the gain
coefficient, a′ = a/10n = 0.0011/10−5 = 110 μV (see Section 3.2).
We followed the same procedure, to find the amplitude value of the
detected weak periodic signal in the non-epileptic EEG signal as
1 μV.

4 Conclusions
Modern signal processing techniques are mainly based on the
frequency-domain analysis originated from FFT. However, a
simple FFT method is not capable of detecting weak periodic
signals submerged in background noise, as shown in Figs. 5b and
6b. The conventional method of analysing the state space diagrams
of the Duffing oscillator is effective in detecting weak periodic
signals in noise with low SNR as demonstrated in Fig. 2 [7, 34–
44]. However, this method is manual; it does not have a graphical
representation of the frequency spectrum such as FFT.

Fig. 6  Wavelet scale index spectrum of the Duffing oscillator system with
external forcing input signal, and periodogram power spectral density of
the input signal
(a) Input τ  represents the weak periodic signals in intense noise with the frequency
values of 10, 17, 25 and 35 Hz, σ = 0.03, (b) Periodogram power spectral density
estimate for input signal, (c) Wavelet scale index spectrum of the Duffing oscillator:
the frequency values of the weak periodic signals that are used as external forcing
input in the Duffing equation correspond to near-zero wavelet scale index parameters
in the graph

 

Fig. 7  Wavelet scale index spectrum of the Duffing oscillator system with
external forcing input signal
(a) Input τ  consists of the weak periodic signals with the frequency values of 8, 12
and 14 Hz. The sampling frequency of the input signal f input is 500 Hz, (b) Sampling
frequency of the oscillator was selected to be the same with the input signal,
f D = f input; the weak periodic signals were detected, (c) Sampling frequency of the
oscillator was selected different from the input signal, f D ≠ f input; the weak periodic
signal detection was not successful
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In this work, we presented a method based on the wavelet scale
index analysis of the Duffing oscillator. We used the wavelet scale
index parameters to numerically distinguish between the chaotic
and periodic states of the Duffing oscillator. We preferred the
wavelet scale index as a quantitative index in the classification of
signals. As shown in Fig. 3, the wavelet scale index proves to be
more sensitive than the maximum Lyapunov exponent in detecting
the transition of the Duffing oscillator from the critical chaotic state
to the periodic state. The wavelet scale index parameters of the
Duffing oscillator converge to zero in the large-scale periodic state
of the system and have values between zero and one when the
system is in chaos. This feature allows us to plot the wavelet scale
index–frequency graph to display the weak periodic signal search
results, similar to the power spectral density graph. Thus, weak
periodic signals are searched automatically by the proposed
method without the need to manually analyse the state space
diagrams of the Duffing oscillator.

This new approach for the weak periodic signal detection, based
on the wavelet scale index spectrum of the Duffing oscillator, was
performed successfully as shown in Figs. 4c, 5c and 6c. The
simulation results showed that initially unknown frequencies of the
weak periodic signals correlate with near-zero wavelet scale index
parameters in the spectrum.

The application of this method in the empirical data was
explained in Section 3.2. Weak periodic signals were also detected
within the empirical data that were used as external forcing input in
the critical chaotic state of the Duffing oscillator. First, the
amplitude scale of the empirical data was fitted to the reference
signal of the Duffing oscillator with a suitable gain coefficient.
Then, the sampling frequency of the Duffing oscillator, f D was set
equal to the sampling frequency of the empirical data, f input. For
this, the time step size of the Duffing oscillator was determined as
h = 100/ f input. Finally, the wavelet scale index spectrum of the
Duffing oscillator was plotted for the frequency scanning. Near-
zero wavelet scale index parameters in the spectrum correspond to

the frequency values of the weak periodic signals in the empirical
data, as shown in Figs. 8 and 9.

The method was performed using the two EEG signals as the
external forcing input in the Duffing equation to demonstrate the
feasibility in the empirical data. Here, the presence of the weak
periodic signals within the EEG signals may potentially reveal
more information about the dynamic structure of the brain.

This method can be used in studying the weak signals in time
series of the measurable processes of dynamical systems in diverse
fields [45–50]. Consequently, we understand that this method is
more efficient in weak periodic signal detection compared to the
conventional method that relies on state-space analysis of the
Duffing oscillator.
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