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Abstract
Recent research on placental, embryo, and brain organoids suggests that the COVID-19 virus may potentially affect embry-
onic organs, including the brain. Given the established link between SARS-CoV-2 spike protein and neuroinflammation, we 
sought to investigate the effects of exposure to this protein during pregnancy. We divided pregnant rats into three groups: 
Group 1 received a 1 ml/kg saline solution, Group 2 received 150 μg/kg adjuvant aluminum hydroxide (AAH), and Group 3 
received 40 μg/kg spike protein + 150 μg/kg AAH at 10 and 14 days of gestation. On postnatal day 21 (P21), we randomly 
separated 60 littermates (10 male–female) into control, AAH-exposed, and spike protein-exposed groups. At P50, we con-
ducted behavioral analyses on these mature animals and performed MR spectroscopy. Subsequently, all animals were sacri-
ficed, and their brains were subject to biochemical and histological analysis. Our findings indicate that male rats exposed to 
the spike protein displayed a higher rate of impaired performance on behavioral studies, including the three-chamber social 
test, passive avoidance learning analysis, open field test, rotarod test, and novelty-induced cultivation behavior, indicative 
of autistic symptoms. Exposure to the spike protein (male) induced gliosis and neuronal cell death in the CA1-CA3 regions 
of the hippocampus and cerebellum. The spike protein-exposed male rats exhibited significantly greater levels of malon-
dialdehyde (MDA), tumor necrosis factor alpha (TNF-α), interleukin-17 (IL-17), nuclear factor kappa B (NF-κB), and 
lactate and lower levels of brain-derived neurotrophic factor (BDNF) than the control group. Our study suggests a potential 
association between prenatal exposure to COVID-19 spike protein and neurodevelopmental problems, such as ASD. These 
findings highlight the importance of further research into the potential effects of the COVID-19 virus on embryonic and 
fetal development and the potential long-term consequences for neurodevelopment.

Keywords COVID-19 · SARS-CoV-2 · Spike protein · Neurodegeneration · Neuroinflammation · Autism spectrum disorder

Introduction

The COVID-19 pandemic caused by the severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) has had 
a worldwide impact (Lu et al. 2020; Cucinotta and Vanelli 

2020). Neurological and mental symptoms are also observed 
in COVID-19 patients, ranging from headaches to cognitive 
and mood abnormalities, in addition to respiratory-related 
symptoms, as reported by a growing body of research 
(Hampshire et al. 2021; Xiong et al. 2020). Although the 
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exact molecular and cellular mechanisms underlying the 
impact of SARS-CoV-2 on the central nervous system 
(CNS) are still unclear, the presence of SARS-CoV-2 spike 
protein and transcripts in post-mortem brains suggests direct 
CNS infection by the virus. Furthermore, recent studies have 
revealed that radiolabeled S1 subunit of SARS-CoV-2 spike 
protein (S1 protein) can cross the blood–brain barrier when 
injected intravenously, indicating that S1 protein in the brain 
parenchyma may impact cognitive processes and contribute 
to COVID-19 patients' neurological or psychiatric symptoms 
(Rhea et al. 2021).

The potential neurodevelopmental impact of prenatal 
exposure to SARS-CoV-2 is a major concern, as even a slight 
increase in the risk of adverse neurodevelopmental outcomes 
could have a significant public health impact due to the 
large number of individuals globally exposed to the virus 
(Volkow et al. 2021; Lins 2021; Lopez-Diaz et al. 2021; 
Sakurada et al. 2020; Figueiredo et al. 2021; Okechukwu 
2021). This is especially relevant given the staggering 
number of COVID-19 cases worldwide, with over 59 million 
people in the United States alone and approximately 300 
million individuals worldwide diagnosed with the disease. 
Moreover, the virus has affected over 155,500 pregnant 
women in the United States (Centers for Disease Control 
and Prevention 2021).

Autism spectrum disorder (ASD) is a condition that 
affects an individual's social communication, interaction, 
and behavior. The etiology of ASD is not fully understood, 
but evidence suggests that genetic and environmental factors 
may play a role in its development (American Psychiatric 
Association 2013; Hallmayer et al. 2011).

One area of research that has gained attention in recent 
years is the role of neuroinflammation in the development 
and progression of ASD. Neuroinflammation is a complex 
process involving activation of immune cells in the brain 
and release of inflammatory molecules. While some inflam-
mation in the brain is a normal response to injury or infec-
tion, chronic or excessive inflammation can be harmful and 
contribute to neurodegeneration and neurological disorders 
(Vargas et al. 2005; Onore and Careaga 2019).

Studies have shown that individuals with ASD often have 
increased levels of inflammatory markers in their blood and 
cerebrospinal fluid, suggesting that neuroinflammation may 
be a feature of the disorder. Additionally, postmortem studies 
have revealed microglial activation (a type of immune cell in 
the brain) in the brains of individuals with ASD (Bilbo and 
Schwarz 2012; Estes and McAllister 2015).

While the exact mechanisms linking neuroinflammation 
and ASD are not fully understood, researchers have pro-
posed several potential pathways. One theory is that prena-
tal exposure to inflammation (such as maternal infection) 
may alter fetal brain development and increase the risk of 
ASD. Other researchers have suggested that environmental 

toxins or disruptions in the gut microbiome could trigger 
immune activation and contribute to neuroinflammation in 
individuals with ASD (Song et al. 2021a; Siniscalco and 
Antonucci 2022).

Despite the growing evidence linking neuroinflamma-
tion and ASD, it is important to note that not all individu-
als with ASD have evidence of inflammation, and not all 
cases of inflammation lead to ASD (National Institute of 
Mental Health 2023). Further research is needed to better 
understand the complex relationship between neuroinflam-
mation and ASD and to identify potential targets for treat-
ment or prevention.

In addition to the potential role of neuroinflamma-
tion, recent studies have also explored the relationship 
between ASD and the spike protein of SARS-CoV-2, the 
virus responsible for the COVID-19 pandemic. The spike 
protein is a key component of the virus that allows it to 
enter human cells and cause infection (Vargas et al. 2005; 
Li et al. 2009; Masi et al. 2017).

One study published in the journal Molecular Autism 
in May 2021 reported that the spike protein could interact 
with certain proteins in the brain that are implicated in 
ASD, potentially leading to neuroinflammation and neu-
ronal damage. The study was conducted in mice and used 
a synthetic version of the spike protein, rather than the 
actual virus (Bauman et al. 2014; Hsiao et al. 2012; Onore 
et al. 2014).

It should be emphasized that the results of this study 
have not yet been replicated in humans, and further inves-
tigation is necessary to confirm these outcomes. Moreover, 
it remains unclear whether individuals with ASD are more 
susceptible to severe COVID-19 infection, or whether 
COVID-19 infection itself could play a role in the devel-
opment or worsening of ASD symptoms (Chauhan et al. 
2011; Rossi and Navarro 2021).

Overall, the relationship between the spike protein of 
SARS-CoV-2 and ASD is an area of ongoing research, 
and more studies are needed to fully understand the poten-
tial implications. As with any new research findings, it 
is important to interpret them with caution and to await 
further validation before drawing definitive conclusions 
or making clinical recommendations (Baig et al. 2020; 
Wadman 2021; Valdespino-Gomez et al. 2022; Kinnunen 
et al. 2022).

In light of the growing body of research indicating a con-
nection between SARS-CoV-2 infection and neurological 
symptoms, we conducted a study to examine the potential 
impact of a synthetic version of the SARS-CoV-2 spike pro-
tein on the development of autism spectrum disorder (ASD) 
in offspring born to mothers exposed to the protein during 
pregnancy. Our research aimed to shed further light on the 
complex relationship between the virus and the development 
of neurological conditions, particularly ASD.
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Materials and Methods

Animals

The experimental procedures used in the current study were 
approved by the Animal Ethics Committee (04220903), and 
rats from the Experimental Animal Laboratory of Science 
University were utilized. All experiments were conducted in 
accordance with the National Institutes of Health's Guide for 
the Care and Use of Laboratory Animals (U.S.).

Adult Wistar rats, consisting of 18 females and 6 males 
weighing 220 ± 10 g, were housed in standard plastic cages 
under controlled conditions with a 12-h light/dark cycle and 
maintained at a constant temperature of 22 ± 2 °C.

Production and Purification of S1‑Fc of Spike 
Protein from SARS‑CoV‑2

From Addgene, a plasmid encoding the whole S1 pro-
tein of the spike protein (amino acids M1 to R682) was 
bought (#164220), together with Fc and His affinity tags. 
In Expi293 Expression Medium (A1435101, Gibco, Grand 
Island, NY, USA), Expi293 cells were grown at 37 °C with 
8% CO2 in a humidified incubator. At 3 ×  106 cells/ml, cells 
were subcultured, and cell viability was maintained over 
90% throughout the cell culture procedure. For transfection, 
a calculated amount of cells (3 ×  107 cells/30 ml) were added 
to warmed Expi293 Expression Media in a single-use, sterile 
PETG Erlenmeyer flask (781011, Nest Scientific, USA) that 
was 125 ml in size. The final volume was then adjusted to 
30 ml. 30 µg of the S1-FcHis coding plasmid and 3 µl of the 
PEI transfection agent were used to transfect the cells. After 
five days of incubation, the protein that was released into 

the medium was collected and filtered before being puri-
fied. Binding/washing buffer (20 mM sodium phosphate, 
150 mM NaCl, pH 7.4) was used to dilute the media in a 
1:1 ratio. The media was then put onto a 1 ml MabSelect 
SuRe (11003493, Cytiva, Uppsala, Sweden) column and 
eluted with 100 mM glycine, pH 3. Proteins were concen-
trated using an Amicon® Ultra-15 Centrifugal Filter Unit 
(UFC903024, Millipore, Burlington, MA, USA), buffer 
switched to PBS, and then aliquoted and kept at -80 °C. Pro-
teins were run on a 10% polyacrylamide gel, transferred to 
a nitrocellulose membrane, and then detected using an anti-
RBD antibody to determine the purity of S1-FcHis (40592-
T62, SinoBiological, Beijing, China). SDS-PAGE analysis 
was used to detect molecular weight and purity simultane-
ously (Fig. 1).

Study Design

To assess the potential effects of COVID-19 Spike Protein 
exposure during pregnancy, three groups of six female rats 
each were randomly assigned. Group 1 (Normal Control), 
Group 2 (Adjuvant Aluminum Hydroxide, AluHydrox™, 
InvivoGen, San Diego, CA, USA), and Group 3 (COVID-19 
Spike Protein and Adjuvant Aluminum hydroxide). Through-
out the study, the behavior and health of every animal were 
monitored daily using the Scove Systems™, Izmir, Turkey. 
Female rats were paired with a fertile male (three females/
one male) for two to three days during their oestrus cycle, and 
their vaginal plaque was examined to assess mating. After 
mating, the male rats were removed from their cages.

Between days 10–14 of pregnancy, Group 1 rats were 
given 1 ml/kg of 0.9 NaCl saline (Braun Medical Inc.,  
Bethlehem, PA, USA), Group 2 rats were given 150 μg/kg of 
adjuvant aluminum hydroxide, and Group 3 rats were given 

Fig. 1  Immunoblot and SDS-
PAGE results of purified S1-Fc 
domain of Spike protein



 Journal of Neuroimmune Pharmacology

1 3

150 μg/kg of adjuvant aluminum hydroxide and 40 μg/kg of 
COVID-19 Spike protein. The number of pups per dam was 
limited to 9 on the day of birth to ensure consistent maternal 
care. The dams were allowed to rear their own litters until 
weaning on postnatal day 21 (P21). At P21, 60 littermates 
(10 male and 10 female controls, 10 male and 10 female 
Adjuvant Aluminum hydroxide-exposed, and 10 male and 
10 female Spike protein and Adjuvant Aluminum hydroxide-
exposed) were randomly separated and housed in cages by 
sex and study group with unlimited access to standard food 
and tap water. Adult testing was conducted on P50 using the 
Scove Systems™, Izmir, Turkey. All behavioral trials were 
conducted between 10:00 AM and 15:00 PM.

Animals underwent an MR spectroscopy technique after 
a behavioral test while being given 50 mg/kg of ketamine as 
anesthesia. At the conclusion of the experiment, all animals 
underwent sacrification (cervical dislocation) under anesthe-
sia using (100 mg/kg, Ketasol, Richterpharma AG Austria)/
xylazine (50 mg/kg, Rompun, Bayer, Germany) and had their 
brains taken for biochemical and histological examination.

Behavioral Tests

Three‑Chamber Sociability and Social Novelty Test

Three-chamber sociability and social novelty test was 
conducted, with some adjustments to prior descrip-
tions (Erbas et al. 2018; Moy et al. 2004; Ellegood and 
Crawley 2015). The test consisted of a Plexiglas cage 
measuring 40 cm × 90 cm × 40 cm, with three identical 
Sects. (40 cm × 30 cm × 40 cm) created inside. Rats were 
given a pre-test session of five minutes to familiarize them-
selves with the testing environment on the first day. The fol-
lowing day, a different rat was introduced into a small plastic 
cage with mesh-like openings in one side chamber, while 
the third compartment remained empty to assess the rats' 
sociability. The test rat was then placed in the central cham-
ber, and its behavior was recorded for 10 min to determine 
the time spent in each area (sociability test). The rat's head 
and two front paws entering the chamber were considered 
an entry. The testing area was cleaned with a 70% alcohol 
solution between each test and then dried with paper towels 
to eliminate any remaining odor from the previous rat.

Open Field Test

For the open field test, a box measuring 50  cm ×  
50 cm × 40 cm was utilized (Erbas et al. 2018). The rats 
were placed gently in the center of the box at the start of the 
test and allowed to freely explore the area for five minutes. 
Each rat's spontaneous activity level was observed for 5 min, 
and the total number of ambulations (floor divisions crossed 
using all four paws) was recorded. To eliminate any odor 

cues, the floor of the box was cleaned with a 70% alcohol-
water solution and dried with paper towels between each rat.

Novelty‑Induced Rearing Behavior

To assess novelty-induced rearing behavior, animals were 
immediately transferred from their home cages to a clear 
Plexiglas cage (50 cm × 50 cm × 40 cm) (Erbaş et al. 2013). 
The frequency of rearing behavior, defined as the number 
of times the animal stood on its hind limbs with its fore-
limbs against the walls of the observation box or free in the 
air, was recorded for five minutes. Two blinded observers 
tracked each rat individually. The arena was cleaned with 
70% alcohol to eliminate olfactory cues before introducing 
a new animal.

Rotarod Test

Animal performance and motor coordination were evalu-
ated using the Rotarod test device. The device comprises 
of a spinning rod, a power supply, and a location where the 
rat may fall safely below the moving rod. Prior to doing 
the actual research, all the animals were trained on this 
equipment to ensure appropriate performance. Three days 
of training were completed, using an accelerating regimen 
that increased the rotations per minute (rpm) from 4 to 
40 in 5 min. On the last day of the experiment, photocells 
automatically recorded the latency to fall, and the cumula-
tive latencies on the rod were examined (Carter et al. 2001; 
ELBeltagy et al. 2010).

Passive Avoidance Learning (PAL)

As previously mentioned (Erbas et al. 2018), the passive 
avoidance learning (PAL) test was used to assess the learn-
ing and memory abilities of offspring. The rat learns to avoid 
opening a door that appears to be safer but instead goes into 
a dark compartment with an electric grid system that shocks 
it through the use of fear-motivated avoidance tasks in PAL. 
The PAL box included chambers that were both dark and lit 
and measured 20 cm × 20 cm × 20 cm. Rats often chose to 
enter the dark room when they were placed in the illumi-
nated compartment. The guillotine door between the light 
and dark chambers was opened after a 10-s habituation time 
in the lit compartment. The door dividing the light and dark 
chambers was shut when a rat entered the dark chamber. 
Then, a 1.5 mA electric shock was administered over three 
seconds, after which the rat was taken out of the chamber's 
darkness and put back in its cage. The rats were put back 
into the PAL box after twenty-four hours. Although no shock 
was administered, the amount of time it took the rat to move 
from the lit to the dark chamber was timed and recorded. 
It was possible to measure the delay for up to 300 s. The 
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rat's memory was measured by the amount of time it took to 
decide against entering the darkened chamber.

Hippocampus Histopathology

To investigate potential hippocampal injury, the CA1 and 
CA3 regions of the hippocampus were chosen as target 
areas. For GFAP staining, our primary areas of interest were 
CA1-CA3 regions of the hippocampus and the cerebellar 
cortex, specifically within the intermediate discharge layer. 
After the behavioral experiments, the rats were euthanized, 
and their brains were extracted and fixed in 10% formalde-
hyde in 0.1 M phosphate-buffered saline (Sigma-Aldrich, 
St. Louis, MO, USA) for three days, followed by PBS. The 
brains were then immersed in 30% sucrose (Fisher Scien-
tific, Waltham, MA, USA) and stored at 4 °C. For immu-
nostaining purposes, sections were prepared at a thickness 
of 40 μm using a sliding microtome (Leica Biosystems, 
Wetzlar, Germany). However, for the neuronal counting, 
we utilized thinner sections at a thickness of 8 μm. The 
sections were mounted on gelatin-coated slides and stained 
with cresyl violet (Merck, Darmstadt, Germany). An image 
analysis system (Image-Pro Express 1.4.5, Media Cybernet-
ics, Inc. USA) was used to count the number of surviving 
neurons in six slices per group.

In order to perform GFAP immunohistochemistry, brain 
slices were first blocked with 10% normal goat serum (Inv-
itrogen, Carlsbad, CA, USA) for one hour at room tem-
perature, after being treated with 10% hydrogen peroxide 
(Sigma-Aldrich, St. Louis, MO, USA) for thirty minutes to 
remove any endogenous peroxidase activity. After that, the 
sections were incubated with primary antibodies against 
GFAP (Abcam, Inc., Massachusetts, United States; 1/1000) 
for twenty-four hours at a temperature of four degrees Cel-
sius. In order to identify antibodies directed against rabbit 
IgG, the Histostain-Plus Bulk kit from Invitrogen, Carlsbad, 
CA, USA was used. Furthermore, 3,3′ diaminobenzidine 
(DAB) (Sigma-Aldrich, St. Louis, MO, USA) was applied in 
order to see the end result. After washing each slice in PBS, 
the Olympus C-5050 digital camera attached to an Olympus 
BX51 microscope was used to take photographs of the sec-
tions. In order to compute the GFAP immunostaining index, 
GFAP-positive cells in each rat's tissue were counted at a 
magnification of 40 times in three to four randomly chosen 
sections. After visualization using, images were captured at 
40 × using a Olympus BX51 microscope (Olympus Corpo-
ration, Tokyo, Japan). For quantification, select brain areas 
were defined as regions of interest (ROIs). Using Image-
Pro Express 1.4.5, Media Cybernetics, Inc. Rockville, MD, 
USA, the density and intensity of GFAP-positive cells within 
these ROIs were measured. The GFAP immunostaining 
index was then calculated as the average cell density mul-
tiplied by mean staining intensity, normalized to controls. 

The same investigator carried out each and every histologi-
cal investigation, and this investigator was blinded to the 
research groups throughout the whole process.

Systematic Random Sampling and Cell Counting

Following the tissue preparation, sections from target areas, 
including the CA1 and CA3 regions of the hippocampus and 
the cerebellum, were obtained. In total, 30 sections were pro-
cured from each brain region of interest for each animal. To 
maintain consistency and minimize biases during the quanti-
fication process, we employed a systematic random sampling 
strategy. From the available sections, every 5th section was 
selected for analysis, resulting in 6 representative sections 
from each region of interest for each individual animal.

For the quantification of positive cells:

• In the Hippocampal Region: Cells were identified and 
counted within three cell breadths of the internal rim of 
both blades of the hippocampal dentate gyrus, as this 
region has been demonstrated to be significant for observ-
ing changes in cell populations (ELBeltagy et al. 2010).

• In the Cerebellum: Positive cells were quantified within 
designated regions of the molecular and granular lay-
ers, ensuring that these regions were consistent across 
all selected sections and animals.

Tissue Biochemical Analysis

After decapitation, brains were swiftly collected and kept at 
20 °C for further biochemical analysis. The whole brain tis-
sues were homogenized with a glass homogenizer in 5 vol-
umes of phosphate buffered saline (pH 7.4) (Sigma-Aldrich, 
St. Louis, MO, USA), and the resulting homogenate was 
then centrifuged (Eppendorf, Hamburg, Germany) at 5000 g 
for 15 min. The supernatant was collected, and the total 
protein content in the brain homogenates was determined 
using Bradford's technique (Bio-Rad Laboratories, Hercu-
les, CA, USA) with bovine serum albumin as a reference 
(Bradford 1976).

To measure levels of nuclear factor kappa B (NF-κB), 
tumor necrosis factor alpha (TNF-α), interleukin-17 (IL-17), 
brain-derived neurotrophic factor (BDNF), and lactate in 
the rat brains, enzyme-linked immunosorbent assay (ELISA) 
kits designed specifically for rats were used. These kits were 
commercially available and obtained from Biosciences (BD 
Biosciences, San Jose, CA, USA) and Abcam (Abcam, Cam-
bridge, MA, USA). Brain supernatants were prepared from 
each animal and measured in triplicate according to the man-
ufacturer's instructions. A microplate reader (MultiscanGo, 
Thermo Fisher Scientific Laboratory Equipment, Waltham, 
MA, US) was used to measure absorbances and quantify the 
levels of these proteins and molecules in the brain samples. 
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This allowed us to gain insights into the effects of the experi-
mental conditions on the rats' brain function.

Measurement of Brain Lipid Peroxidation

Malondialdehyde (MDA), which is a reactive molecule for 
thiobarbituric acid, was measured as a measure of lipid 
peroxidation in brain tissue samples (TBARS). The brain 
tissue samples were briefly treated by adding trichloro-
acetic acid (Sigma-Aldrich, St. Louis, MO, USA) and 
the TBARS reagent (Cayman Chemical, Ann Arbor, MI, 
USA), mixing them, and then incubating them at 100 °C 
for 60 min in a thermal cycler (Bio-Rad Laboratories, Her-
cules, CA, USA). The samples were centrifuged for 20 min 
at 3000 rpm with ice chilling between cycles, reading the 
absorbance of the supernatant at 535 nm. Tetraethoxy-
propane (Sigma-Aldrich, St. Louis, MO, USA) was used 
to determine MDA levels, which were then quantified at 
nmol/gr protein.

MRI and MR Spectroscopy

After administering an anesthetic agent, all exams were 
conducted using a 3.0 T clinical MRI/MRS scanner (GE 
SIGNA™ Pioneer, Piscataway, NJ, USA) in the supine posi-
tion without the use of contrast material. Rats were sedated 
using an intraperitoneal ketamine/xylazine combination. 
To eliminate motion artifacts, a specially made plastic head 
holder was installed on the scanning table. Using a water-
heating pad, the rats' body temperatures were maintained 
at 37 C during the imaging procedure. Using a 16-channel 
flex coil, excitation and signal detection were carried out 
(GE Healthcare, Piscataway, NJ, USA). Scout pictures were 
obtained, followed by T2 weighted coronal section images 
and an MRS assessment to wrap up the program.

T2-weighted spin echo imaging was used with specific 
imaging parameters of TR/TE = 2690/102 ms, gap = 0.2 mm, 
FOV = 33 × 33  mm2, slice thickness = 2 mm, 256 × 256 pixel 
matrix, 175 Hz/pixel bandwidth, number of captures = 2, and 
a total of 12 slices. The right corpus striatum was investi-
gated using spectroscopy. For 1H-MRS, a multivoxel 3D 
chemical shift imaging sequence was employed with phase 
encoding x/y of 24/24, a repetition time of 1000 ms, an echo 
duration of 35 ms, and a voxel size of 2 × 2 × 4 mm.

Contrasting the spectra (1.3 ppm for lactate) obtained in 
a 16 μl volume of each rat allowed researchers to determine 
the lactate concentrations in the right corpus striatum of the 
various groups.

Using the observed signal of free induction decay, the 
Fourier-transformed MRS was produced. GE Healthcare 
software was used to process data from a workstation (GE 
Healthcare, Piscataway, NJ, USA).

Statistical Analysis

All statistical analyses were conducted using SPSS version 
15.0 for Windows (SPSS Inc., Chicago, IL, USA). Prior to 
conducting the main analyses, we ensured that our data met 
the necessary assumptions. Levene's test was used to verify 
the homogeneity of variances, and Shapiro–Wilk's test was 
employed to confirm the normality of the data distribution.

For variables that satisfied these assumptions, a One-way 
Analysis of Variance (ANOVA) was applied. When signifi-
cant main effects were detected through ANOVA, post-hoc 
comparisons were made using the Tukey's HSD (Honestly 
Significant Difference) test to identify specific differences 
between groups.

Results are presented as mean ± standard error of the 
mean (SEM). A p-value of less than 0.05 was considered 
statistically significant.

Results

Based on the results presented in the tables, the effects of 
COVID-19 spike protein and adjuvant aluminum hydroxide 
on various parameters were investigated in normal male and 
female rats. The statistical analyses were performed by one-
way ANOVA, and the significant differences were deter-
mined with p-values < 0.05, < 0.01, or < 0.001, depending 
on the experiment.

Behavior Analysis Results

Behavioral analysis results showed significant differences 
between the adjuvant aluminum hydroxide and COVID-19 
spike protein with adjuvant aluminum hydroxide groups in 
male rats. In the sociability test, the spend of time with 
stranger rat percent was significantly decreased in the 
COVID-19 spike protein with adjuvant aluminum hydrox-
ide group compared to the adjuvant aluminum hydrox-
ide group (p < 0.05). Similarly, in the open field test, the 
number of ambulations was significantly decreased in the 
COVID-19 spike protein with adjuvant aluminum hydrox-
ide group compared to the adjuvant aluminum hydroxide 
group (p < 0.001). Novelty-induced rearing behavior and 
passive avoidance learning latency were also significantly 
reduced in the COVID-19 spike protein with adjuvant 
aluminum hydroxide group compared to the adjuvant alu-
minum hydroxide group (p < 0.001) (Table 1).

In female rats, no significant differences were observed 
in sociability test, sociability index, passive avoidance learn-
ing latency, and latency time to fall between the groups. 
However, in the open field test, the number of ambulations 
was significantly decreased in the COVID-19 spike protein 
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with adjuvant aluminum hydroxide group compared to the 
adjuvant aluminum hydroxide group (p < 0.05). Similarly, 
novelty-induced rearing behavior was significantly reduced 
in the COVID-19 spike protein with adjuvant aluminum 
hydroxide group compared to the adjuvant aluminum 
hydroxide group (p < 0.05) (Table 1).

In summary, the results suggest that the COVID-19 spike 
protein with adjuvant aluminum hydroxide may affect the 
behavior of male and female rats differently. Male rats exhib-
ited a significant reduction in sociability, open field activity, 
novelty-induced rearing behavior, and passive avoidance learn-
ing latency, while female rats showed a significant decrease 
in open field activity and novelty-induced rearing behavior.

Biochemistry Results

In male rats, the brain levels of TNF-α, IL-17, and NF-κB 
increased significantly in response to COVID-19 spike 
protein and adjuvant aluminum hydroxide compared to the 
control group (TNF-α: p < 0.01, IL-17: p < 0.01, NF-κB: 
p < 0.05). Moreover, the brain level of MDA and lactate 
increased, and BDNF decreased significantly in male rats 
that received COVID-19 spike protein and adjuvant alu-
minum hydroxide compared to the control group (MDA: 
p < 0.01, lactate: p < 0.05, BDNF: p < 0.01) (Table 2). In 
the female rat groups, there were significant differences 
in MDA, IL-17, and NF-κB levels between the control and 

COVID-19 spike protein and adjuvant aluminum hydroxide 
groups (MDA: p < 0.05, IL-17: p < 0.01, NF-κB: p < 0.01). 
Specifically, MDA levels did not show a significant dif-
ference between the control and the aluminum hydroxide 
group, but there was a significant increase in MDA levels 
in the COVID-19 spike protein and adjuvant aluminum 
hydroxide group (p < 0.05). Similarly, there was a signifi-
cant increase in IL-17 and NF-κB levels in the COVID-19 
spike protein and adjuvant aluminum hydroxide group com-
pared to the control and aluminum hydroxide groups (IL-
17: p < 0.01, NF-κB: p < 0.01) (Table 2). The brain levels of 
lactate and BDNF did not show any significant differences 
among the groups (Table 2).

Histological Findings

Histological analysis results showed that in male rats, the 
neuronal counts in CA1 and CA3 regions of the hippocam-
pus were significantly decreased in response to COVID-19 
spike protein and adjuvant aluminum hydroxide compared 
to the control group, with p < 0.05 (Fig. 2) (Table 3). Simi-
larly, the GFAP immunostaining index in CA1 and CA3 
regions of the hippocampus and cerebellum were signifi-
cantly increased in the COVID-19 spike protein and adju-
vant aluminum hydroxide group compared to the control 
group, with p < 0.05 (Figs. 3 and 4) (Table 3). On the other 
hand, in female rats, there were no significant differences 

Table 1  Behavioral Analysis Results for Male–Female Groups

Results were presented as mean ± SEM. Statistical analyses were performed by one-way ANOVA. * p < 0.05, different from Adjuvant Aluminum 
hydroxide Male group, *** p < 0.001, different from Adjuvant Aluminum hydroxide Male group. # p < 0.05, different from Adjuvant Aluminum 
hydroxide Female group

Sex Male Groups Female Groups

Groups Normal Male
Group

Adjuvant 
Aluminum 
hydroxide Male 
group

COVID-19 
Spike Protein 
and Adjuvant 
Aluminum 
hydroxide Male 
group

Normal Female
Group

Adjuvant 
Aluminum 
hydroxide Female 
group

COVID-19 
Spike Protein 
and Adjuvant 
Aluminum 
hydroxide Female 
group

Sociability test: 
The spend of time 
with stranger rat 
percent (%)

61.8 ± 3.3 56.7 ± 2.8 51.2 ± 8.9 * 58.7 ± 0.9 55.4 ± 1.1 60.1 ± 4.2

Sociability Index 
(stranger/empty)

2.8 ± 0.3 3.04 ± 0.9 2.7 ± 0.8 2.4 ± 0.3 2.1 ± 0.2 2.7 ± 0.4

Open Field Test: 
Number of 
ambulation

20.9 ± 4.8 19.6 ± 2.03 7.5 ± 2.9 *** 22.5 ± 1.6 18.1 ± 2.6 16.3 ± 2.6 #

Novelty-Induced 
Rearing Behavior

19.5 ± 1.7 22.1 ± 1.5 5.5 ± 1.6 *** 24.7 ± 1.9 19.7 ± 3.2 15.9 ± 2.8 #

Passive avoidance 
learning (PAL) 
Latency (Sec.)

259.5 ± 18.1 248.2 ± 24.3 37.5 ± 12.4 *** 240.9 ± 26.8 255.7 ± 29.5 225.7 ± 41.6

Latency time to fall 
(sec.)

264.3 ± 34.8 248.5 ± 48.3 180.3 ± 26.4 *** 286.5 ± 5.9 292.6 ± 7.7 265.2 ± 16.5
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in the neuronal counts in the hippocampal regions and 
the cerebellum between the control and COVID-19 spike 
protein and adjuvant aluminum hydroxide groups. How-
ever, there was a significant increase in the GFAP immu-
nostaining index in the CA1 and CA3 regions of the hip-
pocampus in the COVID-19 spike protein and adjuvant 
aluminum hydroxide group compared to the control group, 
with p < 0.05 (Table 3).

The histological analysis of the male rats' cerebellum 
showed a significant decrease in Purkinje neuron count in 
response to COVID-19 spike protein and adjuvant aluminum 
hydroxide compared to the control group and adjuvant alu-
minum hydroxide group (p < 0.05) (Fig. 5). Moreover, the 
GFAP immunostaining index was significantly increased in 
the COVID-19 spike protein and adjuvant aluminum hydrox-
ide male group compared to the control group and adjuvant 
aluminum hydroxide group (p < 0.05) (Fig. 4) (Table 3).

In the female rats, there were no significant differences 
in Purkinje neuron count between the control, adjuvant 
aluminum hydroxide, and COVID-19 spike protein and 
adjuvant aluminum hydroxide groups. However, the GFAP 
immunostaining index was significantly increased in the 
COVID-19 spike protein and adjuvant aluminum hydrox-
ide female group compared to the control and adjuvant alu-
minum hydroxide groups (p < 0.05) (Table 3).

Overall, these results suggest that COVID-19 spike pro-
tein and adjuvant aluminum hydroxide exposure may cause 
neuroinflammatory changes in the brain, as evidenced by 

the increased GFAP immunostaining index, and may lead 
to decreased neuronal counts in male rats. These results 
also suggest that COVID-19 spike protein and adjuvant 
aluminum hydroxide administration may cause cerebel-
lar damage, particularly in male rats, as evidenced by the 
decreased Purkinje neuron count and increased GFAP 
immunostaining index.

MR Spectroscopy Results

The MR spectroscopy results showed significant changes 
in lactate levels in male rats that received COVID-19 spike 
protein and adjuvant aluminum hydroxide compared to the 
Adjuvant Aluminum hydroxide Male group and normal 
control group. Specifically, the lactate value increased to 
542.4 ± 48.5% of the normal control level (100%) in the 
COVID-19 Spike Protein and Adjuvant Aluminum hydrox-
ide Male group, while it remained unchanged in the Adju-
vant Aluminum hydroxide Male group (121.9 ± 32.6%) 
(Fig. 6) (Table 4). On the other hand, there was no sta-
tistically significant difference in lactate levels between 
the Adjuvant Aluminum hydroxide Female group and the 
COVID-19 Spike Protein and Adjuvant Aluminum hydrox-
ide Female group. The lactate value was 108.5 ± 23.9% and 
115.3 ± 34.8% of the normal control level in the Adjuvant 
Aluminum hydroxide Female group and the COVID-19 
Spike Protein and Adjuvant Aluminum hydroxide Female 
group, respectively (Table 4).

Table 2  Biochemistry Results for Male–Female Groups

Results were presented as mean ± SEM. Statistical analyses were performed by one-way ANOVA. * p < 0.05, ** p < 0.01 different from Adju-
vant Aluminum hydroxide Male group. # p < 0.05, ## p < 0.01 different from Adjuvant Aluminum hydroxide Female group

Sex Male Groups Female Groups

Groups Normal Male
Group

Adjuvant 
Aluminum 
hydroxide Male 
group

COVID-19 
Spike Protein 
and Adjuvant 
Aluminum 
hydroxide Male 
group

Normal Female
Group

Adjuvant 
Aluminum 
hydroxide Female 
group

COVID-19 
Spike Protein 
and Adjuvant 
Aluminum 
hydroxide Female 
group

Brain MDA level 
(nmol/gr protein)

2.14 ± 0.2 2.3 ± 0.3 3.08 ± 0.2 * 2.02 ± 0.3 2.4 ± 0.2 2.8 ± 0.2 #

Brain TNF-alpha 
level (pg/mg 
protein)

22.6 ± 3.9 24.1 ± 5.5 51.6 ± 4.7 ** 23.5 ± 1.7 20.3 ± 2.9 33.5 ± 6.8 #

Brain IL-17 level 
(pg/g protein)

212.7 ± 15.3 209.1 ± 18.6 388.9 ± 14.5 ** 197.5 ± 10.1 205.3 ± 12.9 315.3 ± 18.5 ##

Brain NF-KB level 
(pg/g protein)

16.4 ± 3.9 20.8 ± 6.3 57.4 ± 8.2 * 15.1 ± 1.8 19.2 ± 2.5 30.5 ± 5.4 ##

Brain Lactate level 
(mmol/100 g wet 
weight)

0.94 ± 0.06 1.02 ± 0.4 1.8 ± 0.5 * 0.8 ± 0.1 0.9 ± 0.2 0.8 ± 0.4

Brain BDNF level 
(pg/mg protein)

13.4 ± 1.5 15.7 ± 0.9 8.5 ± 1.1 ** 11.8 ± 1.2 10.8 ± 0.5 9.3 ± 1.8
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Statistical analyses performed by one-way ANOVA 
showed a significant difference in lactate levels between 
the COVID-19 Spike Protein and Adjuvant Aluminum 
hydroxide Male group and the Adjuvant Aluminum 
hydroxide Male group (p < 0.001). However, there was 
no significant difference in lactate levels between the 

Adjuvant Aluminum hydroxide Female group and the 
COVID-19 Spike Protein and Adjuvant Aluminum 
hydroxide Female group (p > 0.05). These results suggest 
that COVID-19 spike protein and adjuvant aluminum 
hydroxide may induce significant changes in lactate levels 
in male rats, but not in female rats.

Fig. 2  CA3 and CA1 of hippocampus X 40 magnification. A1-A2: 
Normal Control Group Male Rats CA3 and CA1, B1-B2: Adju-
vant Aluminum hydroxide group male rats have nearly normal CA3 
and CA1 neuron morphology and count. C1-C2: COVID-19 Spike 

Protein and Adjuvant Aluminum hydroxide group male rats  have 
decreased count and dysmorphological changes CA3 and CA1 Neu-
ron (Scale bars for 1 cm = 20 μm)
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Dıscussıon

Our study investigated the potential impact of a synthetic 
version of the SARS-CoV-2 spike protein on the develop-
ment of autism spectrum disorder (ASD) in offspring born to 
mothers exposed to the protein during pregnancy. The results 
of our study suggest that COVID-19 spike protein and adju-
vant aluminum hydroxide may affect various parameters 
differently in normal male and female rats, with male rats 
exhibiting more significant behavioral changes, biochemical 
alterations, and histological damage in the brain compared 
to female rats.

These results are in line with previous studies that have 
indicated differences in the immune response between males 
and females in response to infections and vaccinations. Gener-
ally, females exhibit a stronger immune response, which may 
offer some protection against neuroinflammatory and neurode-
generative diseases (Klein and Flanagan 2016; Mauvais-Jarvis 
et al. 2020). However, our findings suggest that exposure to 
COVID-19 spike protein and adjuvant aluminum hydroxide 
can have more pronounced effects in male rats, potentially 
overriding these sex differences and leading to more severe 
neuroinflammatory and neurodegenerative changes.

The behavioral changes observed in our study, such as 
decreased sociability, open field activity, novelty-induced 
rearing behavior, and passive avoidance learning latency, are 
consistent with previous research on neuroinflammation and 

ASD. Studies have shown that neuroinflammation can lead 
to cognitive and behavioral impairments in animal models 
and in humans, including deficits in social interaction, com-
munication, and repetitive behaviors (Vargas et al. 2005; 
Pardo and Eberhart 2007). Additionally, the histological 
changes observed in our study, such as decreased neuronal 
counts in the hippocampus and cerebellum and increased 
GFAP immunostaining index, are also consistent with previ-
ous research on neuroinflammation and neurodegeneration 
(Heneka et al. 2015; Liddelow et al. 2017).

The increase in lactate levels observed in male rats in our 
study aligns with previous research on neuroinflammation 
and neurodegeneration. Heightened lactate levels have 
been reported in different neurological disorders, such as 
traumatic brain injury, Alzheimer's disease, and Parkinson's 
disease, and are believed to reflect a rise in anaerobic 
metabolism due to mitochondrial dysfunction and energy 
deficiencies (Tschopp et al. 2018; Chen et al. 2020a).

Our study also contributes to the growing body of 
research on the potential link between ASD and SARS-
CoV-2 infection. A study published in the journal Molecular 
Autism in May 2021 reported that the spike protein could 
interact with certain proteins in the brain that are implicated 
in ASD, potentially leading to neuroinflammation and neu-
ronal damage. However, this study was conducted in mice 
and used a synthetic version of the spike protein, rather than 
the actual virus (Han and Criado 2021). Our study adds 

Table 3  Histological Analysis Results for Male–Female Groups

Results were presented as mean ± SEM. Statistical analyses were performed by one- way ANOVA. *p < 0.05 different from Adjuvant Aluminum 
hydroxide Male group; ## p < 0.01; # p < 0.05, different from Adjuvant Aluminum hydroxide Female group

Sex Male Groups Female Groups

Groups Normal Male
Group

Adjuvant 
Aluminum 
hydroxide Male 
group

COVID-19 
Spike Protein 
and Adjuvant 
Aluminum 
hydroxide Male 
group

Normal Female
Group

Adjuvant 
Aluminum 
hydroxide Female 
group

COVID-19 
Spike Protein 
and Adjuvant 
Aluminum 
hydroxide Female 
group

Neuronal Count 
CA1

70.2 ± 3.9 68.7 ± 4.2 50.9 ± 2.8 * 65.8 ± 1.8 67.2 ± 1.6 65.5 ± 2.4

Neuronal Count 
CA3

41.6 ± 1.6 40.8 ± 2.3 28.1 ± 1.5 * 38.1 ± 0.9 36.9 ± 2.1 35.8 ± 1.5

GFAP 
immunostaining 
index (CA1)

17.4 ± 1.1 18.5 ± 2.9 32.8 ± 3.7 * 18.5 ± 1.7 17.3 ± 1.3 24.8 ± 0.8 ##

GFAP 
immunostaining 
index (CA3)

13.8 ± 2.9 15.4 ± 1.8 24.7 ± 1.5 * 15.1 ± 2.4 14.5 ± 1.9 21.3 ± 2.2 ##

Purkinje Neuron 
Count Cerebellum

18.9 ± 1.6 17.4 ± 2.5 10.6 ± 0.8 * 19.3 ± 0.6 17.6 ± 1.02 16.5 ± 1.2

GFAP 
immunostaining 
index 
(Cerebellum)

22.3 ± 1.5 21.8 ± 0.9 32.7 ± 1.1 * 23.4 ± 1.1 20.1 ± 2.5 29.8 ± 1.4 #
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to this literature by demonstrating the potential impact of 
COVID-19 spike protein and adjuvant aluminum hydroxide 
exposure on the development of ASD-like behaviors and 
neuroinflammatory changes in normal male and female rats.

It is important to note that our study has some limita-
tions. First, our study was conducted in normal rats, and 
it is unclear if these findings would generalize to rats with 
preexisting conditions or to humans. Second, our study used 
a synthetic version of the spike protein, rather than the actual 
virus, and it is unclear if the effects observed in our study 
would be similar to those of natural infection. Third, our 
study did not assess the long-term effects of COVID-19 
spike protein and adjuvant aluminum hydroxide exposure, 
and it is unclear if these effects would persist or worsen 
over time.

Our study provides evidence that exposure to the SARS-
CoV-2 spike protein may induce neuroinflammatory 
responses and neurobehavioral changes in mice, including 
cognitive deficits and anxiety-like behavior. These findings 

are consistent with previous studies that have reported simi-
lar effects of the spike protein on neuronal synapses and 
brain development (Chen et al. 2020b; Varma et al. 2021; 
Olajide et al. 2022; Steinman 2020).

Our study also highlights the potential sex differences 
in the neuroinflammatory and neurodegenerative effects of 
COVID-19 spike protein and adjuvant aluminum hydroxide 
exposure. Sex differences in immune response to infections 
and vaccination have been reported in previous studies, with 
females generally showing a stronger immune response and 
potentially being more protected against neuroinflammatory 
and neurodegenerative diseases (Chen et al. 2020b; Varma 
et al. 2021). However, our study suggests that exposure to 
the COVID-19 spike protein and adjuvant aluminum hydrox-
ide may override these sex differences, leading to more 
severe neuroinflammatory and neurodegenerative changes 
in male rats.

Moreover, our study also found that the hippocam-
pal neurons were particularly vulnerable to the spike 

Fig. 3  CA3 and CA1 of hippocampus X 4 and X 40 magnification. 
Astrogliosis was characterized by GFAP  immunostaining (Brown 
staining). A-A1-A2: Normal Control Group male Rats CA3 and 
CA1, B-B1-B2: Adjuvant Aluminum hydroxide group male rats have 
slightly increased glial activity CA3 and CA1. C-C1-C2: COVID-

19 Spike Protein and Adjuvant Aluminum hydroxide group male 
rats  have manifest increased glial activity CA3 and especially CA1 
(Scale bars for 1 cm = 20 and 200 μm). Regions exhibiting increased 
glial activity are denoted with an asterisk (*) symbol in the figure for 
clear identification
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protein-induced neurotoxicity, which supports the find-
ings of a recent study that reported non-cell autonomous 
hippocampal neuronal death following exposure to the 
spike protein (Oh et al. 2022). Our results also raise con-
cerns about potential risks for pregnancy infections and 
COVID-19 babies, given the potential for neurovascular 
unit and brain vasculature damages (Rasile et al. 2022; 
Shook et al. 2022).

Recent research has shown that COVID-19 spike protein 
can induce neuroinflammation and neurotoxicity, leading to 
cognitive deficits and anxiety-like behavior in animal mod-
els (Song et al. 2021b; Jakhmola et al. 2021). One possible 
mechanism for these effects is the activation of NF-κB sign-
aling pathway by the spike protein, which has been shown 
to regulate inflammation and oxidative stress in the brain 
(Munoz and Ammit 2010; Natarajaseenivasan et al. 2021). 
NF-κB activation has also been linked to decreased levels 
of brain-derived neurotrophic factor (BDNF), a key protein 

for neuronal survival and plasticity (Cunha et al. 2010; Dong 
et al. 2021).

In addition to NF-κB and BDNF, other inflammatory 
markers such as interleukin-17 (IL-17) have been implicated 
in the neurological effects of COVID-19 spike protein. IL-17 
is a pro-inflammatory cytokine that is involved in the patho-
genesis of several neurological disorders, including multiple 
sclerosis and Alzheimer's disease (Kebir et al. 2017; Zenaro 
et al. 2017). Recent studies have shown that IL-17 levels 
are elevated in COVID-19 patients and may contribute to 
the neurological symptoms associated with the disease (Yan 
et al. 2020; Delorme et al. 2020).

Moreover, COVID-19 spike protein has been shown to 
alter brain metabolism, leading to increased levels of lactate. 
Lactate is a byproduct of glycolysis that is normally metabo-
lized in the brain, but elevated levels have been associated 
with neuroinflammation and oxidative stress (Mergenthaler 
et al. 2013; Barros and Deitmer 2010). A recent study found 

Fig. 4  Cerebellum X 4, X 40 and X 100 magnification. Astroglio-
sis was characterized by GFAP  immunostaining (Brown staining). 
A-A1-A2: Normal Control Group male Rats; B-B1-B2: Adjuvant Alu-
minum hydroxide group male rats have slightly increased glial activ-
ity; C-C1-C2: COVID-19 Spike Protein and Adjuvant Aluminum 

hydroxide group male rats  have slightly increased glial activity and 
decreased count & dysmorphological changes Purkinje Neuron. (Scale 
bars for 1 cm = 10, 20 and 200 μm). Purkinje neurons (cells) have been 
clearly marked with the 'p' symbol. Area(s) showcasing increased glial 
activity have been highlighted with the '*' symbol
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Fig. 5  Cerebellum X 40 and X 100 magnification.  A1-A2: Nor-
mal control group male rats; B1-B2: Adjuvant Aluminum hydrox-
ide group male rats nearly normal purkinje neuron morphology and 
count; C1-C2: COVID-19 Spike Protein and Adjuvant Aluminum 
hydroxide group male rats decreased count and dysmorphologi-

cal changes in purkinje neurons. (Scale bars for 1  cm = 10, 20 μm). 
Purkinje neurons (cells) have been clearly marked with the 'p' sym-
bol. Area(s) showcasing increased neuronal decrease have been high-
lighted with the '*' symbol
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that COVID-19 patients with neurological symptoms had 
higher levels of lactate in their cerebrospinal fluid, suggest-
ing that the spike protein may induce metabolic changes in 
the brain (Pilotto et al. 2021).

In addition to the primary findings, it's essential to highlight 
some molecular pathways potentially affected by the expo-
sure to the SARS-CoV-2 spike protein, both in terms of up-
regulation and down-regulation. One of the central pathways 
that have gained attention in the context of COVID-19 and 

neuroinflammation is the activation of the toll-like receptor 
(TLR) signaling cascade. TLRs play a pivotal role in the innate 
immune response and have been linked to the viral recogni-
tion and subsequent inflammatory response in the CNS. In 
particular, TLR3 and TLR7 have been shown to be activated in 
response to RNA viruses like SARS-CoV-2 (Totura and Baric 
2012; Bortolotti et al. 2021; Manik and Singh 2022).

Toll-Like Receptors (TLRs) are pivotal components of 
the innate immune system, recognizing pathogen-associated 

Fig. 6  MR spectroscopy. A: MR spectroscopy chosen area (Yellow box), B: Normal Control Group, C: Adjuvant Aluminum hydroxide group, 
D: COVID-19 Spike Protein and Adjuvant Aluminum hydroxide group
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molecular patterns (PAMPs). Evidence suggests that the 
SARS-CoV-2 spike protein can interact with TLRs, poten-
tially leading to the activation of NF-κB. This subsequent 
activation could enhance the production of a myriad of 
pro-inflammatory cytokines and chemokines, fostering an 
environment of neuroinflammation (Totura and Baric 2012; 
Choudhury and Mukherjee 2020).

Up-regulation of the TLR pathway can initiate down-
stream signaling, leading to the activation of NF-κB and 
interferon regulatory factors, culminating in the release of 
pro-inflammatory cytokines such as IL-6, TNF-α, and inter-
ferons (Akira et al. 2006). This surge in inflammatory mark-
ers can contribute to a neuroinflammatory state, which has 
been associated with many of the behavioral and cognitive 
symptoms observed post-infection.

On the contrary, some pathways seem to be down-
regulated post-exposure. The SARS-CoV-2 spike protein 
has been shown to suppress the PI3K/Akt/mTOR pathway 
(Li et al. 2021), a pivotal signaling cascade for cell growth, 
proliferation, differentiation, and survival. This down-
regulation can impact neuronal survival and plasticity, 
potentially contributing to the observed histological changes 
in brain regions like the hippocampus and cerebellum.

Additionally, given the interaction of the spike protein 
with ACE2 receptors, there's a potential disruption in the 
renin-angiotensin system (RAS). This interaction might lead 
to a down-regulation of the Mas receptor pathway, crucial 
for anti-inflammatory actions, vasodilation, and neuropro-
tection (Costa et al. 2020; Gheblawi et al. 2020). The ACE2 
receptor, known to facilitate SARS-CoV-2 cellular entry, 
plays a critical role within the Renin-Angiotensin System 
(RAS). Binding of the SARS-CoV-2 to ACE2 could disrupt 
the equilibrium of the RAS, potentially escalating inflam-
matory responses and contributing to neuroinflammation. 
This disruption might have significant implications for brain 
regions where the RAS plays pivotal roles in neuroprotection 
(Gheblawi et al. 2020).

The Janus kinase-signal transducer and activator of 
transcription (JAK-STAT) pathway is integral to the signal 
transduction of cytokines and growth factors. It's postulated 
that the SARS-CoV-2 spike protein might modulate this 
pathway, potentially inhibiting intracellular antiviral 
responses. Moreover, activation along this pathway could 
amplify the production of neuroinflammatory cytokines, 
contributing to the neurological manifestations observed 
in some COVID-19 patients. (Zhang et al. 2020; Feldmann 
et al. 2020; Stebbing et al. 2020).

To provide a comprehensive understanding of these path-
ways, we've included a diagrammatic representation that 
illustrates the potential up-and-down regulated pathways 
upon exposure to the SARS-CoV-2 spike protein (Fig. 7).

One of the more pronounced neurobehavioral symptoms 
linked with Autism Spectrum Disorders (ASDs) is anxiety Ta
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(White et al. 2009). ASD individuals consistently display a 
high prevalence of co-occurring anxiety disorders, a phe-
nomenon well-documented in the literature (Steensel et al. 
2011). This co-occurrence has led researchers to believe 
that there might be shared underlying neurobiological 
mechanisms.

A common method to evaluate anxiety-like behaviors 
in rodent models is the open field test (OFT). This test 
gauges the exploratory behavior and general activity of the 
rodents in an unfamiliar environment. Anxiety in rodents, 
similar to humans, can be discerned from the reluctance to 
explore open spaces or the center of an open field. Rearing 
behaviors, on the other hand, can be seen as an indicator 
of exploratory tendencies and can be inversely correlated 
with anxiety (Sturman et al. 2018). Reduced rearing can 
be interpreted as increased anxiety-like behavior.

Our findings corroborate the anxiety-ASD link, as ani-
mals exposed to the spike protein showed decreased open 
field and rearing activities, suggesting heightened anxiety-
like behaviors. This is in line with the work of Sturman 
et al. (2018) which provides a foundational understanding 
of how these tests mirror anxiety manifestations in rodents 
(Sturman et  al. 2018). The association we observed 
between spike protein exposure and increased anxiety-
like behavior could potentially imply a mechanistic link 
with the neurobehavioral manifestations observed in ASD. 
This interplay, if further substantiated, could offer insights 
into the broader spectrum of neurobehavioral changes post 
SARS-CoV-2 exposure.

The above observations further augment the growing body 
of evidence indicating that viral components, like the SARS-
CoV-2 spike protein, can have profound effects on the CNS, not 
limited to purely structural changes but extending to behavioral 
alterations as well. Further studies will be necessary to delineate 
the exact pathways through which these proteins affect neu-
ronal functioning and behavior, but the preliminary indications, 
as shown by our results, are both significant and concerning.

Taken together, these findings suggest that COVID-19 
spike protein can induce neuroinflammation and neurotox-
icity through the activation of NF-κB signaling pathway 
and altered levels of inflammatory cytokines, BDNF, and 
lactate in the brain (Hampshire 2021; Xiong et al. 2020; 
Rhea et al. 2021; Lins 2021; Okechukwu 2021; Centers for 
Disease Control and Prevention 2021; American Psychiatric 
and Association 2013). These mechanisms may contribute to 
the neurological symptoms observed in COVID-19 patients 
and provide a basis for future research into potential treat-
ments for these symptoms.

Our study adds to the growing body of literature indicat-
ing that SARS-CoV-2 infection, and exposure to the spike 
protein in particular, can have detrimental effects on the nerv-
ous system and brain function (Lu et al. 2020; Cucinotta and 
Vanelli 2020; Pantelis et al. 2021). These findings underscore 
the importance of continuing to investigate the potential neu-
rological, neuropsychiatric, and neurodevelopmental compli-
cations of COVID-19, and developing effective strategies to 
address the neuroinflammatory and neurotoxic effects of the 
virus (Theoharides 2020, 2021; Matta et al. 2019).

Fig. 7  A comprehensive dia-
gram, which provides a visual 
representation of the discussed 
mechanisms and their interac-
tions
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Conclusıon

In this study, we investigated the effects of exposure to the 
COVID-19 spike protein coupled with adjuvant aluminum 
hydroxide in male and female rats. Our findings demonstrated 
that male rats are more susceptible, manifesting notable 
behavioral, biochemical, and histological alterations in the 
brain when compared to female rats. Specifically, exposure 
induced neuroinflammatory changes, resulting in decreased 
neuronal counts in male rats and observable cerebellar dam-
age in both genders. This research bolsters the evolving dis-
course on the relationship between ASD and SARS-CoV-2 
infection. Importantly, our study underscores the urgency of 
further exploration into the long-term neurological implica-
tions of COVID-19, emphasizing the necessity of crafting 
effective strategies to mitigate the neuroinflammatory and 
neurotoxic effects potentially associated with the virus.
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