
Robotics and Computer–Integrated Manufacturing 72 (2021) 102182

Available online 21 May 2021
0736-5845/© 2021 Elsevier Ltd. All rights reserved.

Minimizing makespan and flowtime in a parallel multi-stage cellular 
manufacturing company 
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A B S T R A C T   

This study proposes a 3-phase solution approach for a multi-product parallel multi-stage cellular manufacturing 
company. The study focuses on a case study involving a shoe manufacturing plant in which products are pro
duced according to their due dates. The investigated manufacturing process has three stages, namely lasting cells, 
rotary injection molding cells, finishing-packaging cells. System performance is measured based on total flow
time and makespan. We propose a 3-phase solution approach to tackle the problem; 1) the first phase of the 
proposed approach allocates manpower to operations in the lasting cells and finishing-packaging cells, inde
pendently. The objective is to maximize the production rates in these cells. 2) The second phase includes cell 
loading to determine product families based on a similarity coefficient using mathematical modeling and genetic 
algorithms (GA). The proposed GA algorithm for cell loading performs mutation prior to crossover, breaking 
from traditional genetic algorithm flow. The performance measures flow time and makespan are considered in 
this phase. 3) Flow shop scheduling is then performed to determine the product sequence in each (lasting, rotary 
injection molding, finishing-packaging) cell group. This 3-phase solution approached is repeated with alternative 
manpower level allocation to lasting and finishing-packaging cells where the total manpower level remains the 
same.   

1. Introduction 

The group technology (GT) philosophy focuses on bringing similar 
parts together through development of group scheduling and cellular 
manufacturing systems [1–3]. The cellular manufacturing system, 
developed as an alternative production approach that aims to combine 
the productivity advantages of mass production with the flexibility 
afforded by workshop-style production, employs different algorithms to 
group machines according to the similarities of parts. Production cells 
combine a machine, a material handling system, and a central control 
unit that manages them. Parts are classified into families based on 
similarities. These similarities can be features of the parts or processes 
required for the production of the part [4]. The goal of using GT con
cepts is to reduce non-value adding processes such as material handling, 
set-ups, and inventory [5]. Cellular manufacturing systems utilize group 
technology to form manufacturing cells. In a manufacturing system, a 
group technology philosophy is used to create manufacturing cell-part 
family pairs. This creates manufacturing cells with a small number of 
machines on which similar parts are processed to obtain certain benefits 

[6]. The benefits of cellular manufacturing systems can be summarized 
as follows: reductions in move distances/move times, lead times, 
response times to customer orders, work-in-process inventory, set-up 
times, finished goods inventory, and unit costs; improvements in 
part/product quality have also been cited [7,8]. 

This study focuses on a multi-stage cellular system where products 
cannot be completed in a single cell and instead they are processed on 
serially connected multiple cells due to nature of the manufacturing 
process. One of the main reasons is that too many operations are 
required to complete the product in just one cell. Furthermore, there is 
interruption in the flow of products from unit transfer in the cells to 
injection molding where process takes relatively longer time and batch 
processing occurs. This complicates the cellular control issues where not 
only cell loading and cell scheduling are necessary, but also balancing 
work force allocation in the serially formed manufacturing cells become 
important. 

In the global supply chain, customer satisfaction levels are a very 
important point in the sustainability of a sector. This study analyzes a 
shoe manufacturing company that produces different volumes and 
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varieties of shoes for the market. The objective of the manufacturing 
company is to meet the scheduling and quality demands of the shoe 
sector while minimizing costs as much as possible; because of the large 
number of manufacturers and brands available in the sector, competi
tion is intense. This company produces shoes in a variety of designs, 
colors, and materials. Each customer orders different models of shoes, 
each model in turn having different sole types [full shot (FS) and midsole 
(MS)], wearer gender, materials, colors, and sizes. The manufacturing 
company has six cell groups that each consist of a lasting cell group (LC), 
a rotary injection molding cell group (RMC), and a finishing and pack
aging cell group (FC). In the LC, shoes are prepared for rotary injection 
moulding in the RMC. The LC consists of sequential processes that are 
similar for all sole designs and shoe sizes. From the LC, shoes are 
transferred to the RMC, which has six pairs of stations, each of which can 
process one pair of shoes at a time. After injection moulding in the RMC, 
the shoes go to the FC, where extra material is removed from the shoe; 
afterwards, the shoes are finished and packed. The cell groups and 
configurations are explained in Fig. 1. 

This is the first study that combines cell loading and flowshop 
scheduling in a multi-stage cellular manufacturing environment. First, 
products are assigned to cells considering available capacity during cell 
loading phase. Later, in the cell scheduling phase flowshop scheduling 
approach is used to consider multi-stage configuration of each cell. 
Furthermore, even though the total manpower for each cell is fixed, the 
allocation of manpower to two stages is not and therefore has to be 
evaluated as part of the overall scheduling system. All these character
istics make this scheduling problem very unique and also complicated. 
The allocation of manpower to stages affects the output rate from each 
stage and thus affect the processing times used in cell loading and 
flowshop scheduling. In short two different scheduling problems (cell 

loading and cell scheduling) and manpower allocation decisions are 
addressed simultaneously in this study. 

The remainder of this paper is organized as follows: First, a literature 
review is presented. Second, the problem statement and formulation are 
defined, and all three phases are explained. In addition, a genetic al
gorithm (GA) based approach is developed to solve the cell loading 
problem. Next section describes a case study designed to demonstrate 
how the proposed methodology is applied. Finally, conclusions and 
recommendations for future research are provided. 

2. Review of current literature 

In this paper, a three-phase manufacturing cell loading and 
manpower allocation problem for a multi-stage cellular structure is 
proposed. Süer et al. [9] extended cellular control research to multi-cell 
environments, which necessitates cell loading considerations. Aktürk 
and Wilson [10] applied cell loading problem by using aggregate pro
duction planning. Babayiğit [11] used a mathematical model and ge
netic algorithm to solve the problems of manpower allocation and cell 
loading, further extending previous works by Süer [12]. In Babayiğit’s 
thesis, the research focused on single stage cells and models were 
developed to minimize the number of tardy jobs. Various different GA 
approaches were developed and tested. Data was generated theoreti
cally and there was no case study involved. 

Süer et al. [13] developed a mathematical model to decide the 
manpower level by minimizing makespan. This is also a multi-phase 
study where the focus is on cell loading in a multi-cell environment 
and then determining the product sequence in each cell. The first phase 
also starts with the optimal manpower allocation to operations in a cell. 
The cells are however single-stage cells and the overall objective of the 

Fig. 1. Cell groups and configurations.  
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study is to minimize intra-cell manpower transfers to smooth the oper
ations and simplify control issues in the cells. Stnha and Hollier [14] 
determined that a desired level of throughput and optimum 
work-in-progress in a cell can be achieved through sequencing, reduced 
batch size, and period batch control. Gupta and Ho [15] solved the 
problem of scheduling jobs on two identical machines. The authors 
described an optimal schedule to minimize the makespan with subject to 
minimum total flowtimes. Gharbi and Haouari [16] considered the 
identical parallel machine scheduling problem to minimize makespan 
with constraints of release dates and delivery times. 

Min and Cheng [17] developed a genetic algorithm to minimize 
makespan in identical machine scheduling problems. Chaudhry [18] 
used genetic algorithm approach to minimize total flowtime for iden
tical parallel machines and to determine worker assignment. Huang 
et al. [19] considered a sequential genetic algorithm to find a schedule 
that minimizes makespan. Selen and Hott [20] determined mixed 
integer goal programming with the objective of minimizing makespan 
and total flowtime to solve m-machine flowshop-scheduling problems. 
Framinan et al. [21] developed a heuristic procedure to provide the 
decision maker with a good solution with respect to the objectives of 
makespan and flowtime minimization. Damodaran [22] solved sched
uling problem with a batch-processing machine to minimize its make
span or completion time of the last batch of jobs by using simulated 
annealing approach. Manjeshwar et al. [23] also used simulated 
annealing approach to solve flow shop scheduling problem. Gianno
poulos et al. [24] solved multi-objective flowshop-scheduling problems 
with the goal of minimizing makespan, maximum tardiness, and total 
flowtime. 

Süer et al. [25] considered a three-phase methodology to perform 
cell loading and scheduling in a shoe manufacturing company. This 
research used three family definitions (sub-families, families, and su
perfamilies) in the cell loading process. These families allow the number 
of set-ups to be minimized. This paper focuses on cell loading and family 
scheduling issues in the same shoe manufacturing plant. However, 
manpower levels in lasting and finishing-packaging cells were assumed 
constant and therefore they were not considered as a factor in the so
lution methodology. Similarly, multi-stage connected cells were 
conveniently ignored. The performance measure was minimizing the 
maximum tardiness of jobs. This paper focuses on family sequencing and 
family splitting issues and particularly when jobs in the same family 
have different due dates. The tradeoff between individual due dates and 
running the products in the same family all together is investigated. 
Chang et al. [26] described a simulated annealing approach to minimize 
makespan in identical parallel batch-processing machines. Saraçoğlu 
and Süer [27] considered two objectives to minimize the total flow time 
and the makespan in order to generate non-dominated solution by using 
fuzzy mixed integer programming modeling. The minimization of 
makespan in the permutation flowshop scheduling problem with a 
position-based learning effect is considered by Muştu and Eren [28]. 
Gupta and Ruiz-Torres [29] sought to schedule n jobs on m identical 
machines in a way that minimized makespan, given that flow time was 
already minimized. This problem is an example of hierarchical multiple 
criteria scheduling. The authors proposed a heuristic and evaluated it 
against existing heuristics. Süer et al. [30] studied multi-objective 
scheduling problem considering three objectives, number of tardy 
jobs, total manpower, and average flow time. Saad et al. [31] proposed a 
multiple objective optimization technique to load and schedule cellular 

manufacturing systems by using goal programming formulation. Min 
et al. [32] developed multi-objective flow shop scheduling model with 
makespan and energy consumption by considering transportation 
constraint. 

Three mathematical models are used to define and analyze the 
manufacturing system described in this paper. The first model seeks to 
allocate manpower in order to independently maximize the production 
rates in manufacturing cells. A similarity matrix is developed to describe 
the similarity between the various products based on the worker allo
cation levels acquired in the first model. This matrix is then used in the 
second model to perform cell loading to maximize the similarity of 
products in each cell. With production rates and part families defined in 
the first two models, the third model is used to schedule the products in 
their cells using the flow shop scheduling approach. A GA approach is 
developed for the cell loading phase. 

3. Problem statement 

The authors focus on a shoe manufacturing company that produces 
shoes in a variety of designs, sizes, and colors, using a variety of mate
rials. There are parallel multi-stage cell groups and multi-processes in 
each cell. 

The authors make the following assumptions in mathematically 
expressing our multi-product multi-stage manpower allocation, cell 
loading, and sequencing problem:  

• There are two types of soles: FS and MS.  
• All processing times are known and deterministic.  
• There are multiple stages: LC, RMC, and FC.  
• Set-up time is not allowed.  
• All materials are ready in the beginning of the planning period. The 

ready time is zero.  
• Demand data are known and deterministic. 

Three phases are used to describe and evaluate this manufacturing 
system problem. The first phase decides the manpower allocation in the 
first cell and last cell and uses five sequential operations to maximize the 
production rate. In the second phase, a similarity coefficient matrix is 
calculated according to the manpower levels obtained in Phase I. In the 
same phase, a GA approach is applied to cell loading, using similar 
families in each cell group to maximize the utilization in each cell group. 
After all these decisions, in the third phase products are sequenced to 
minimize the makespan and flowtime separately. The structure used in 
this study is summarized in Fig. 2. 

4. Solution methodology 

4.1. Phase I: Manpower allocation 

The problem is to formulate a model that maximizes the total pro
duction rate with constraints of worker levels and the operation times 
for each cell. The following notations are used to derive the integer 
linear programming (ILP) formulation of the proposed multi-product 
multi-stage cell loading problem developed by Süer et al. [13] is used 
in this study. The objective of this mathematical model is to optimally 
allocate manpower to maximize production rates. This model is run for 
each product at the various worker levels in the LC and FC. Eq. (1) shows 

Fig. 2. Mathematical model application sequence.  
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the objective function of the mathematical model, which is to maximize 
the output rate. The relationship between the number of workers at 
station and the production rate is determined in Eq. (2). This relation
ship ensures that enough workers are assigned to each station to meet 
the desired output rate. An upper limit on the number of workers 
allowed for a station is established in Eq. (3). Eq. (4) ensures that the 
number of workers assigned to stations does not exceed the total number 
of workers in the system. Eq. (5) ensures the integer restrictions for the 
variables. 

Index:  
j : Operation index  

Parameters:  
tj : Unit operation time for operation j.
Uj : Maximum number of operators available for operation j.
W :  Total number of workers available. 
s : Number of operations.  

Decision Variables:  
R : Production rate. 
mj : Number of operators assigned for operation j.

Objective Function: 

Maximize Z = R (1) 

Subject to: 

mj
(
1
/

tj
)
− R ≥ 0 ∀j (2)  

mj ≤ Uj ∀j (3)  

∑s

j=1
mj ≤ W ∀j (4)  

mj ∈ {0, 1} ∀j (5) 

According to the mathematical model, allocation manpower level is 
decided for each product, as an example the manpower level for 15 
workers in LC operations and 20 workers in FC operations are shown in 
Fig. 3. 

4.2. Phase II: Cell loading 

4.2.1. Mathematical model for cell loading 
This mathematical model assigns products to cells in order to 

maximize the similarity among products in the cells and to minimize the 
number of cells opened. Capacity restrictions ensure that cell utilization 
will not exceed 100%, and the number of opened cells is minimized by 
introducing a penalty to the objective function for each opened cell. 
Kusiak [33] developed p-median mathematical model used to identify 
product families and then cells are created accordingly. The similarity 
coefficient used in this model is calculated based on the 
machine-level-based similarity coefficient between products i and k 

(SCi,k) and operations s developed by Süer and Ortega [34] and used in a 
study generated by Gannon and Süer [35]. Eq. (6) shows the formula 
used in the calculation of the similarity coefficient. 

SCi,k =

∑s
j=1min

(
mi,j,mk,j

)

∑s
j=1max

(
mi,j,mk,j

) j = 1,…, s, ∀i, ∀k (6) 

The objective, shown in Eq. (7), maximizes the similarity of products 
within cells, while enforcing a penalty for opening additional cells. The 
constraints expressed in Eqs. (8) and (9) require the utilization in each 
opened LC or FC to be no greater than 100%. Eq. (10) ensures that each 
product is assigned to a cell. Products cannot be assigned to a cell that 
has not already been opened. This constraint is enforced by Eq. (11). Eq. 
(12) ensures that the integer restrictions for all variables are used in the 
model. 

Sets and Indices:  
N : Number of products, i = 1,…,N, k = 1,…,N   

Parameters:  
SCi,k : Similarity coefficient between product i and k.  
ui : Capacity requirements for product i in cell 1. 
wi :  Capacity requirements for product i in cell 2. 
p :  Penalty factor for opening a new cell.  

Decision Variables: 
xik: 1 if product i belongs to family k, 0 otherwise. 
Objective Function: 

Maximize Z =
∑n

i=1

∑n

k=1

(
SCi,kxi,k

)
−

∑n

k=1

(
pxk,k

)
(7) 

Subject to: 

∑n

i=1
uixi,k ≤ 1 ∀k (8)  

∑n

i=1
wixi,k ≤ 1 ∀k (9)  

∑n

k=1
xi,k = 1 ∀i (10)  

xi,k ≤ xk,k ∀i, k (11)  

xi,k ∈ {0, 1} for ∀i, k (12)  

4.2.2. Proposed genetic algorithm approach for cell loading 
A GA approach for cell loading is proposed in this section. GA is a 

stochastic search method proposed by Holland [36] that simulates the 
development process of biological systems based on Darwin’s ‘survival 
of the fittest’ principle. The developed GA approach is used for cell 
loading in Phase II that is similar to the methodology used in a study 
performed by Gannon and Süer [35]. The chromosome initially is 
created by randomly ordering the products. The cells are then loaded 

Fig. 3. Allocation manpower level for LC and FC operations.  
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sequentially from the randomly ordered list. When the utilization in 
either the LC or FC exceeds a maximum allowed utilization, that cell is 
closed, and the next cell is opened. This continues until all products are 
assigned to a cell. An example of the chromosome representation is 
shown in Fig. 4. The fitness function is calculated using Eq. (13), which 
is shown again below. 

Order-based crossover is performed by selecting a string of genes 
from one parent and passing the string onto the child chromosome. The 
remaining genes are then filled in the order they appear in the other 
parent chromosome. Position-based crossover is performed by selecting 
a set of positions at random from one parent chromosome and passing 
the values at these positions to the child. The missing genes are then 
selected and filled in the child chromosome in the order they appear in 
the other parent chromosome. Examples of position-based crossover and 
order-based crossover are shown in Fig. 5 and Fig. 6. The arrows show 
how genes are passed from the parent chromosome to the child 
chromosome. 

Fitness function =
∑n

i=1

∑n

k=1

(
SCi,kxi,k

)
−

∑n

k=1

(
pxk,k

)
(13) 

The mutation strategy employed in this study is reciprocal exchange 
mutation, which is performed by using random numbers to select two 
positions in the chromosome and then swapping the values in these 
positions. An example of this mutation strategy is shown in Fig. 7. After 
crossover and mutation have been performed, products are reassigned to 
cells in the same manner as the original chromosome to ensure that the 
maximum utilizations are not exceeded. Selection involves selecting the 

top chromosomes from among the parent and child chromosomes to 
move onto the next generation. 

This study also investigates the effect of performing mutation before 
crossover. Flow in classical GAs occurs by means of crossover before 
mutation. By reversing the traditional flow, it is possible that better 
parent chromosomes will be created and performing crossover with 
better parent chromosomes will result in improved offspring chromo
somes. In this study, selection is performed by selecting the best ranked 
chromosomes from all the parent and offspring chromosomes for the 
next generation. 

4.3. Phase III: Mathematical model for flow shop scheduling 

The objective of this model is to schedule products in each cell group 
such that the selected performance measure is optimized. The objective 
is to complete the products so as to minimize either their makespan or 
flowtime. Let cti,j be the time at which product j is completed in cell i. 
The makespan is the time of the last product completion in the last cell 
group, max{cti,j}, and the flowtime is the sum of the product completion 
times in the last cell group, 

∑n
j=1cti,j. Flow shop scheduling is conducted 

for each part family formed independently. Processing times for the 
rotary machine are determined based on the mold type, size, and gender 
of the intended wearer. This mathematical model is run independently 
for each family formed in the previous step. 

The objective function is designed to minimize the makespan, and is 
given in Eq. (14). Constraint (15) establishes the relationship between 
the product’s completion time and its makespan, ensuring that the 
makespan is equal to the completion time of the last product in the last 
cell group. Constraint (16) asserts that a product must finish processing 
in its current cell before it can begin in the following cell. In a similar 
manner, Constraint (17) ensures that a product must complete pro
cessing in the final cell before it can be labeled complete. The rela
tionship between completion times, due dates, and tardiness is described 
in Constraint (18). Constraint (19) ensures that the total tardiness is 
equal to the summation of tardiness values of all products. According to 
the relations given in Constraint (20), if product j is processed before 
product k in cell i, then Constraint (21) is implied, if product j is not 
processed before product k in cell i. Constraints (22) and (23) ensure that 
the integer restrictions for all variables are used in the model. Constraint 
(24) specifies that all variables will be positive.  

Sets and Indices:  

C : Number of cells, i = 1,…,C  
N : Number of products, j = 1,…,N, k = 1,…,N  
Parameters:  

pi,j : Processing time of product j in cell i.  
dj : Due date of product j.
ri,j : Ready time of product j in cell i.  
ε : A positive small number. 
M : A positive large number.  

Decision variables:  

yi,j  Start time of product j in cell i.  
cti,j  Completion time of product j in cell i.  
tj  Tardiness of product j.  
tt  Total tardiness. 
zi,j,k  Binary variable: equal to one if the product j is processed before product k in 

cell i, and zero if the product j is not processed before product k in cell i.  
MS  Makespan 
Ftime  Total flowtime  

Model I: 
Objective Function: 

min Z = MS (14) 

Subject to: 

Fig. 4. Chromosome structure.  

Fig. 5. Position-based crossover operator.  

Fig. 6. Order-based crossover operator.  

Fig. 7. Mutation operator.  
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cti,j ≤ MS  

i = C, ∀j (15)  

yi+1,j − yi,j ≥ pi,j  

i= 1,…, C, ∀j\{C} (16)  

cti,j − yi,j ≥ pi,j  

i = 1,…, C, ∀j (17)  

cti,j − tj ≤ dj  

i = C, ∀j (18)  

tt −
∑N

j=1
tj = 0 ∀j (19)  

M.zi,j,k +
(
yi,j − yi,k

)
≥ pi,k  

i = 1,…, C, j = 1,…,N − 1, ∀k (20)  

M.
(
1 − zi,j,k

)
+
(
yi,k − yi,j

)
≥ pi,j  

i = 1,…, C, j = 1,…,N − 1, ∀k (21)  

zi,j,k ∈ {0, 1} ∀i, j, k (22)  

wj ∈ {0, 1} ∀j (23)  

MS ≥ 0, cti,j ≥ 0 for ∀i, j, yi,j ≥ 0 for ∀i, j (24) 

Objective function (14) can be formulated again by adding total 
tardiness and total flowtime constraints in order to justify the total 
flowtime and total tardiness values. Objective function (25) ensures that 
the makespan is minimized and that flowtime is minimized simulta
neously by adding an infinitesimally small number, ε. Constraint (26) is 
added after being defined in the mixed integer linear programming 
model (MILP). The small number, ε, is added to the objective function 
to ensure that the optimal solution has the minimal amount of total 
flowtime among solutions with optimal total tardiness. 

Model II: 

min Z = MS + ε.
∑N

j=1
tj + ε.Ftime (25) 

Subject to: 
Constraint sets (15)-(24) of the Model I 

Ftime =
∑N

j=1

(
cti,j − ri,j

)
(26) 

In this study, two objective functions are applied to measure the 
performance of the manufacturing system. The makespan objective 
function is defined beforehand. The other objective function is designed 
to minimize the total flowtime that defines the total completion times of 
all products in the last cell. While makespan is calculated according to 
the maximum completion time of the last cell, flowtime is calculated 
according to the total of the completion times in the last cell. To mini
mize the total flowtime, the objective function is changed by using Eq. 
(27). Model II, which minimizes the total flowtime, is obtained by using 
objective function (27) and all the constraints (16) – (24) used in Model 
I. 

min Z = Ftime + ε.
∑N

j=1
tj (27)  

5. Case study of a shoe manufacturing company 

The company analyzed in this study is a shoe manufacturing firm 
that produces different sizes and models of shoes. The manufacturing 
plant has six cell groups; each cell has three stages, and 20 products are 
processed in every stage. Each entry of a customer order becomes a job. 
All jobs are assumed to have the same due date at the end of the planning 
period. The planning period is organized as a weekly period that com
prises 40 hours. The rotary machine cell (RMC) is the bottleneck of the 
manufacturing cell. The injection times for FS and MS are calculated as 
0.33 min and 0.27 min, respectively. 

In the first phase, the manpower allocation problem is solved by 
using the data given in Table 1. The worker allocation performed in this 
study assumes that 35 workers are available to be divided between the 
LC and FC for each cell group. The LC and FC both consist of five 
sequential manual operations requiring simple tools. Owing to the 
different shoe sizes and types, the processing times vary for the 
operations. 

When workers are allocated to the LC or FC, they are also allocated to 

Table 1 
Input data for Phase I.  

Products Type Demand LC Operations Time (min) RMC time (min) FC Operations Time (min) 
1 2 3 4 5 1 2 3 4 5 

1 FS 1863 1.41 1.36 0.76 0.65 0.39 0.33 0.44 0.41 1.49 0.54 1.15 
2 MS 2147 0.8 0.78 0.85 0.76 0.59 0.27 1.23 1.1 0.32 0.63 1.17 
3 FS 2291 0.79 1.45 1.13 1.98 0.53 0.33 1.07 0.43 0.91 1.21 1.12 
4 FS 1328 0.31 0.54 2.79 0.66 0.95 0.33 0.77 0.99 0.95 1.47 0.33 
5 FS 2300 1.26 0.43 1.39 1.28 1.4 0.33 0.58 0.68 1.49 0.28 0.4 
6 FS 1627 0.73 0.57 1.04 0.78 0.94 0.33 2.18 0.43 0.42 1.72 0.23 
7 MS 1389 0.57 0.78 1.23 0.19 0.36 0.27 0.6 0.44 1.12 0.81 1 
8 FS 2010 0.43 1.42 1.07 0.25 0.79 0.33 1.64 2.05 0.7 0.31 2.55 
9 FS 1601 0.87 0.61 1.04 0.87 0.68 0.33 0.48 0.59 0.26 0.15 0.41 
10 MS 1409 1.98 0.62 1.25 1.25 0.8 0.27 1.39 2.1 0.62 0.63 1.17 
11 MS 2271 1.38 1.86 1.24 0.6 0.34 0.27 0.7 0.88 1.3 1.4 0.6 
12 FS 2259 1.68 1.38 0.55 1.21 0.81 0.33 0.86 1.09 1.65 0.25 0.25 
13 MS 1680 1.65 2.12 0.73 0.34 1.53 0.27 0.99 1.05 0.89 0.67 1.24 
14 MS 2021 0.89 1.25 0.81 1.69 0.32 0.27 0.99 1.46 3.1 1.57 2.05 
15 FS 2036 1.15 1.24 1.24 0.48 1.12 0.33 0.23 1.21 0.93 0.37 0.7 
16 MS 1919 1.01 0.96 0.79 0.21 1.68 0.27 0.52 0.66 0.68 0.7 0.79 
17 MS 1495 0.38 0.25 0.58 0.16 0.76 0.27 0.87 0.79 0.17 0.44 0.27 
18 MS 2032 0.59 0.7 0.87 0.85 0.94 0.27 0.22 1.36 1.29 1.69 0.32 
19 MS 2005 0.37 0.48 1.18 0.81 1.39 0.27 0.97 1.47 0.23 1.01 1.88 
20 FS 1446 1.87 1 2.9 0.41 0.24 0.33 0.78 0.38 0.95 0.49 0.96  
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an operation within the cell. Because the processing times vary on these 
operations from shoe to shoe, the worker allocation to operations within 
the cell also varies from shoe to shoe. Six worker level combinations 
were evaluated: 15/20, 16/19, 17/18, 18/17, 19/16, and 20/15, where 
the first number represents the workers assigned to the LC and the 
second number represents the workers assigned to the FC. In the first 
model, W = 35 workers are specified for 15/20 configurations; for all 
operations, a maximum worker level of 15 is used for solving the 
manpower allocation problem. All three mathematical models and the 
GA are used to solve the problems of manpower allocation, cell loading, 
and flow shop scheduling for 20 products. 

For all worker combinations and for all products, Phase I’s model is 
run separately and then maximum production rates and manpower 
levels for each product are obtained. Table 2 shows the manpower level 
and production rates for LC and FC operations at the 15/20 worker level 
combination. Similarity coefficient matrices are calculated according to 
the results of the first phase. A similarity coefficient matrix is obtained 
separately for each of the six worker combinations. Table 3 shows the 
similarity matrix for 20 products at the 15/20 worker combination level. 
In Phase II, according to the similarity coefficient matrix, families are 
determined by using the GA described before in order to maximize the 

utilization for all cell groups. 

5.1. Parameter optimization 

The GA has two crossover strategies and the option to perform mu
tation before crossover. This creates four general strategies: order-based 
crossover before mutation (GA1), position-based crossover before mu
tation (GA2), order-based crossover after mutation (GA3), and position- 
based crossover after mutation (GA4). Within each of the four general 
strategies, ten combinations of crossover probability and mutation 
probability were tested. Five trials were performed for each crossover 
and mutation probability combination in each of the general strategies. 
The crossover/mutation combinations evaluated were 0.45/0.01, 0.45/ 
05, 0.45/10, and 0.45/0.20. A Tukey test was done to compare all 
possible pairs of probability combinations and determine if a significant 
difference exists between the probability combinations. Both 0.45/0.10 
and 0.45/0.20 produced significantly different results from 0.45/0.01, 
and 0.45/0.20 produced significantly different results from 0.45/0.05. 

In addition to showing the part family assignments, GA strategies 
were carried out using MATLAB version 8.6 (R2015b) in a reasonable 
timeframe, employing all GA strategies shown in Table 4. Flow shop 

Table 2 
Manpower level and production rates for 15/20 manpower level.  

Products LC Operations manpower level LC Production Rates (unit/ min) FC Operations manpower level FC Production Rates (unit/ min) 
1 2 3 4 5 1 2 3 4 5 

1 4 4 3 2 2 2.84 2 2 7 3 6 4.55 
2 3 3 3 3 3 3.53 5 5 2 3 5 4.07 
3 2 3 3 5 2 2.07 4 2 4 5 5 3.74 
4 1 2 7 2 3 2.51 4 4 4 6 2 4.04 
5 3 1 4 3 4 2.33 3 4 8 2 3 5.17 
6 3 2 4 3 3 3.19 8 2 2 7 1 3.67 
7 3 4 5 1 2 4.07 3 2 6 4 5 4.55 
8 2 5 4 1 3 3.52 4 6 2 1 7 2.44 
9 3 2 4 3 3 3.28 5 6 3 2 4 9.76 
10 5 2 3 3 2 2.07 5 7 2 2 4 3.17 
11 4 5 3 2 1 2.42 3 4 5 5 3 3.57 
12 4 4 2 3 2 2.38 4 5 7 2 2 4.24 
13 4 5 2 1 3 1.96 4 4 4 3 5 3.81 
14 3 4 2 5 1 2.47 2 3 7 4 4 1.95 
15 3 3 3 2 3 2.42 2 7 5 2 4 5.38 
16 3 3 3 1 5 2.97 3 4 4 4 5 5.71 
17 3 2 4 1 5 6.25 6 6 2 4 2 6.90 
18 2 3 3 3 4 3.39 1 5 5 7 2 3.68 
19 2 2 4 3 4 2.88 4 5 1 4 6 3.19 
20 4 3 6 1 1 2.07 5 2 5 3 5 5.21  

Table 3 
Similarity matrix for 15/20 worker combination level.  

Products 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1  .76 .67 .50 .58 .67 .76 .67 .67 .76 .88 .88 .76 .67 .81 .67 .58 .67 .58 .67 
2   .76 .58 .76 .88 .67 .67 .88 .76 .67 .76 .67 .67 .93 .76 .67 .88 .76 .58 
3    .50 .58 .67 .58 .58 .67 .67 .58 .67 .50 .76 .71 .58 .50 .76 .67 .50 
4     .58 .67 .58 .58 .67 .50 .43 .43 .43 .36 .61 .50 .58 .58 .67 .58 
5      .88 .58 .58 .88 .67 .50 .58 .50 .50 .71 .67 .76 .76 .88 .50 
6       .67 .67 1.0 .76 .58 .67 .58 .58 .81 .67 .76 .76 .88 .58 
7        .76 .67 .58 .67 .67 .67 .58 .71 .67 .67 .58 .58 .76 
8         .67 .50 .67 .58 .76 .50 .71 .67 .67 .67 .67 .58 
9          .76 .58 .67 .58 .58 .81 .67 .76 .76 .88 .58 
10           .67 .76 .58 .58 .71 .58 .58 .67 .67 .58 
11            .76 .76 .67 .71 .58 .50 .58 .50 .67 
12             .76 .76 .71 .58 .50 .67 .58 .58 
13              .58 .71 .67 .58 .58 .50 .58 
14               .61 .50 .43 .58 .50 .50 
15                .81 .71 .81 .71 .61 
16                 .88 .76 .67 .58 
17                  .67 .76 .58 
18                   .88 .50 
19                    .50 
20                      
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scheduling is performed in Phase III. The scheduling mathematical 
model was executed for each part family in each worker combination 
level by using LINGO 17.60 on an Intel Core i7–4790 PC @3.60 GHz 
processor with 16.0 GB of RAM. All alternative models were applied to 

20 products and six cell groups by separately using two objective 
functions, and makespan measurements, flowtime measurements, and 
product sequences were obtained. The results are shown in Table 5. All 
models were compared with each other to determine dominance in the 

Table 4 
Phase II cell loading results for all manpower level and all models.  

Worker Level Model Cell Loading 
Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 

15/20 ILP 8,12,13 1,11,14 2,10,15 4,6,9,16,17 5,18,19 3,7,20  
GA1 8,19,9,2 20,7,3 15,13,16 11,14,1 10,6,17,5 18,12,4  
GA2 13,12,8 17,5,19,9 1,14,11 6,16,4,18 7,3,20 2,15,10  
GA3 12,8,13 10,15,2 16,9,17,4,6 14,1,11 3,20,7 18,19,5  
GA4 7,3,20 5,17,16,6 11,14,1 2,15,10 19,9,18,4 13,8,12 

16/19 ILP 2,6,8,9 5,12 13,15,16 10,17,18,19 4,7,11,20 1,3,14  
GA1 7,20,11 3,14,1 12,18,4 2,6,9,8 5,10,17,19 16,15,13  
GA2 19,5,10,17 20,11,7 14,3,1 13,15,16 4,18,12 2,6,9,8  
GA3 13,15,16 20,4,11,7 17,18,19,10 14,3,1 5,12 2,8,6,9  
GA4 19,8,19,9 16,15,13 12,5 14,3,1 10,17,6,2 11,4,20,7 

17/18 ILP 2,5,9 1,3,14 10,12,15 8,17,19 7,13,16,20 4,6,11,18  
GA1 12,13,11 20,7,10,16 14,3,1 15,6,4,18 9,2,5 19,17,8  
GA2 19,10,8,17 7,20,16 5,2,9 4,15,6,18 11,13,12 3,1,14  
GA3 1,14,3 8,17,19,10 18,15,6 5,9,2 16,7,20,4 12,11,13  
GA4 14,3,1 20,7,4,16 10,15,2 9,11,12 13,18,5 6,8,17,19 

18/17 ILP 5,8,9,10 1,12,14 3,6,15,18 4,13,16,17,19 2,7,11,20 NO  
GA1 12,15,18,6 8,9,5,10 11,2,7,13,17 19,1,16,4 14,20,3 NO  
GA2 20,16,2,6,7 1,14,12 8,5,9,10 11,4,18,15 3,19,13,17 NO  
GA3 17,19,8 16,13,15 11,7,20,1 6,18,4,12 9,10,2,5 3,14  
GA4 1,13,2,16 20,14,3 9,11,17,19,4 18,10,6,12 7,5,15,8 NO 

19/16 ILP 2,5,9,10 12,14 3,13,16 4,6,15,18 8,17,19 1,7,11,20  
GA1 13,8,12 2,9,5,10 6,19,17,16 3,14 18,15,11,4 1,20,7  
GA2 4,15,18,6 12,14 1,20,11,7 3,13,16 5,10,2,9 19,8,17  
GA3 9,10,2,5 11,15,18,4 12,13,8 16,17,19,6 14,3 20,7,1  
GA4 3,16,13 8,17,19 7,1,20,11 12,14 15,18,6,4 5,10,2,9 

20/15 ILP 2,5,6,9 3,14 11,13,15,16 4,12,18 8,17,19 1,7,10,20  
GA1 1,7,11,20 17,8,19 9,5,2,10 13,3,16 18,6,4,15 14,12  
GA2 5,10,2,9 11,7,1,20 6,15,18,4 14,12 8,19,17 16,13,3  
GA3 7,1,12,20 13,11,16 14,3 4,18,15,6 8,17,19 10,2,5,9  
GA4 12,14 4,6,15,18 16,13,8 7,3,20,1 9,2,10,5 11,19,17  

Table 5 
Results for all models and objectives.   

Mspan objective Ftime objective 
Model Schedule Mspan Ftime Status Distance Mspan Ftime Status Distance 

ILP S1 57.75 177.12 Dominated 0.68 61.5 171.82 Dominated 0.74  
S2 56.9 171.59 Non-dominant 0.56 6.31 157.63 Dominated 0.44  
S3 57.74 169.97 Non-dominant 0.54 59.4 155.5 Dominated 0.37  
S4 61.42 193.77 Dominated 1.19 64.05 18.25 Dominated 0.99  
S5 58.4 168.47 Non-dominant 0.54 58.66 151.07 Non-dominant 0.28  
S6 64 18.9 Dominated 1.25 64 17.27 Dominated 0.82 

GA1 S1 61.24 187.16 Dominated 1.06 64.16 187.16 Dominated 1.11  
S2 58.3 189.08 Non-dominant 0.93 6.31 171.59 Dominated 0.70  
S3 58.45 164.08 Non-dominant 0.46 61.59 152.55 Non-dominant 0.41  
S4 61.2 193.77 Dominated 1.17 62.67 182.09 Dominated 0.97  
S5 63.03 168.47 Dominated 0.99 63.03 161.57 Dominated 0.63  
S6 59.15 166.31 Dominated 0.55 59.15 153.47 Non-dominant 0.33 

GA2 S1 57.39 162.58 Non-dominant 0.38 61.5 153 Dominated 0.41  
S2 58.3 189.08 Dominated 0.93 6.31 157.63 Dominated 0.44  
S3 58.45 164.08 Dominated 0.46 61.59 152.55 Dominated 0.41  
S4 59.94 193.77 Dominated 1.09 61.41 187.51 Dominated 1.03  
S5 58.4 168.47 Dominated 0.54 58.66 151.07 Non-dominant 0.28  
S6 59.15 166.31 Dominated 0.55 59.15 153.47 Dominated 0.33 

GA3 S1 57.75 177.12 Dominated 0.68 61.5 171.82 Dominated 0.74  
S2 56.9 171.59 Non-dominant 0.56 6.31 157.63 Dominated 0.44  
S3 58.45 15.36 Non-dominant 0.25 61.59 141.1 Non-dominant 0.28  
S4 59.41 182.8 Dominated 0.86 6.01 156.84 Non-dominant 0.41  
S5 63.03 168.47 Dominated 0.99 69.52 161.57 Dominated 1.11  
S6 64 166.31 Dominated 1.10 64 153.47 Dominated 0.59 

GA4 S1 57.39 165.98 Dominated 0.45 61.5 152.66 Dominated 0.41  
S2 56.9 182.66 Non-dominant 0.78 61.16 164.23 Dominated 0.59  
S3 57.02 143.79 Non-dominant 0.02 59.4 136.9 Non-dominant 0.07  
S4 59.8 191.54 Dominated 1.04 61.93 177.25 Dominated 0.85  
S5 58.4 168.47 Dominated 0.54 58.66 151.07 Non-dominant 0.28  
S6 59.15 166.31 Dominated 0.55 6.18 153.47 Dominated 0.36  
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scheduling. There are three results in the non-dominated set, which 
includes S2, S3, and S5, according to the Mspan objective in the ILP 
model. On the other hand, S1, S4, and S6 results are shown in the 
dominated results. However, if the flowtime objective is used for the 
scheduling problem, only S5 shows as a non-dominated result. Thus, a 
decision must be made to determine which results should be used. 

In this case, Euclidian distance is applied according to two perfor
mance measures and the best results [37,38]. In order to avoid any 
problem arising from the criteria scale differences, the authors 
normalize the values by using this formula for the ith scheduling solu
tion: SN

ijk = (Sijk − min{Sijk})/(max{Sijk} − min{Sijk}), where Sijk denotes 
the value of the jth objective function and kth performance measure, and 
k = 1 for makespan and k = 2 for flowtime. Euclidian distances are 
calculated by the following formula: 

dij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑2

k=1

(
SN

ijk − min
{

SN
ijk

})2

√
√
√
√

i = 1,…, n, j = 1,…,m (29)  

and the minimum distance, which is used to select best results, is given 

as 

d∗
ij = min

{
dij | i= 1, 2,…, n

}
(30) 

According to the distance values in Table 5, S5 has the minimum 
distance compared to the other non-dominated and dominated solu
tions, and was selected as the best solution in the ILP model. On the 
other hand, all the solutions obtained from all the models show that the 
best solution is composed of S3 scheduling based on the GA4 approach. 
In the shoe manufacturing company scheduling and loading problem, 
the products will be sequenced for six cell groups by using 17 workers 
for LC and 18 workers for FC, and using makespan objective function 
Model I {(14,3,1), (7,4,16,20), (2,15,10), (12,11,9), (18,5,3), 
(17,6,19,8)}. In this solution, the optimal makespan is 57.02, and the 
corresponding sum of flow times is 143.79. Eleven products will be tardy 
and the total tardiness and maximum tardiness values are 101.95 and 
17.02, respectively. Gantt charts for the 20 products, six cell groups, and 
three stages are shown in Fig. 8. 

Analysis of Variance (ANOVA) is conducted in order to explore the 
relative significance of individual factors in terms of their main effects 
on the objective function. At a significant level of 5%, worker level, 
objective function, and applied different models are effective on the 

Fig. 8. Gantt Chart for scheduling solution with objective of makespan.  
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results of makespan and total flowtime. On the other hand, there is also 
interaction effect on the results by using worker level and models. The 
interaction plots in Fig. 9 (a-b) show the parameters’ interaction effects 
on the makespan and flowtime results. As seen in Fig. 9, when the third 
worker level combination (17/18) was utilised, the best solution is 
found by using cell loading solutions of GA4 strategies in ILP. 

6. Conclusion 

In this study, the authors solved a real-life shoe manufacturing 
scheduling problem. The authors formulated a three-phase solution 
methodology to solve a multi-product parallel multi-stage cellular 
manufacturing system problem, with the objective of minimizing the 
makespan and flowtime. The first model allocates manpower to maxi
mize the production rate in the lasting and packing cells independently. 
A similarity matrix between the various products was obtained based on 
the worker allocation levels acquired in the first model. In order to 
maximize the similarity of products in each cell, the second model was 
applied to allocate products. Four different GA approaches were devel
oped for cell loading in Phase II. Different cell loading results were ob
tained from the GA approaches and the ILP model. All cell loading 
results were applied to find the scheduling that obtained the optimal 
makespan and flowtime response. The model and the solution technique 
were found to be an effective approach in solving cell loading and 
scheduling problems encountered in cellular manufacturing systems. 

Cellular manufacturing continues to be important and relevant in the 
manufacturing industry today. Production activity has been only 
increasing in the world due to increasing population and wealth and 
buying power in every corner of the world. More countries are taking 
part in this economic development and competition is tough and 
widespread. In countries where labor-intensive manufacturing is 
dominant, the approach discussed in this paper can be extensively 
adapted and used to gain any economic advantage as a result of higher 
manpower utilization in cells.  Other examples of industries can be listed 
as electromechanical industry, medical device industry, and bicycle 
industry. 

In future research, this model can be further generalized to include a 
multi-objective programming model in order to consider all objectives in 
one model, and a Pareto approach to solve the non-dominant solution. 
All phases discussed in this paper can be solved simultaneously as well 
and we will attempt this in the future works. Because of the complexity 
and exponentially execution time for larger problems, meta-heuristics 
methods can also be considered for solving this problem in a reason
able time. In addition, the authors will develop a model with stochastic 
demand for all types of products. The authors also plan to validate our 
system by applying it to manufacturing systems problems through 

simulation. 
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