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Energy-Based Scheduling Optimization To Minimize The Total
Energy Consumption And The Total Tardiness In A Single Machine
Manufacturing System With The Sequence-Dependent Setup Times

Highlights
< Energy-based scheduling problem in manufacturing systems.
«+ An energy-based genetic optimization method is proposed.

The energy-based genetic optimization method provides effective performance.

Graphical Abstract

In this study, the total energy consumption and the total tardiness are minimized in a single machine. The energy-
based genetic optimization method is used and effective results are obtained.
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Figuré. Graphical Abstract

Aim
It is aimed to perform an energy-based scheduling optimization in manufacturing systems.
Design & Methodology

The different job problems is solved by proposed the energy-based genetic optimization method, which is a heuristic
method, the analytical solution and the GAMS.

Originality

Performances of proposed the energy-based genetic optimization method, the analytical solution and the GAMS are
evaluated.

Findings

The proposed energy-based genetic optimization method provides feasible solutions in a much shorter time than the
analytical solution and the GAMS in the different job problems.

Conclusion

The results and calculation times demonstrate the effectiveness of the proposed energy-based genetic optimization
method.
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Energy-Based Scheduling Optimization To Minimize
The Total Energy Consumption And The Total
Tardiness In A Single Machine Manufacturing System
With The Sequence-Dependent Setup Times
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due to many reasons
er focuses on energy-based
del is developed for a single
imes in order to minimize the total

such as global warming, legal obligations and lowering company expens

scheduling problem in manufacturing systems. A mixed-integer nonlinear §r
machine scheduling problem with the sequence-dependent setup times an
energy consumption and the total tardiness. An energy-based genetic opti

the performance of the proposed method. As a result, it is seen that method provides effective results.
Keywords: Energy consumption, genetic algorithm, jc@& )

Sira Bagimli Hazirlik Siireli Tek Makineli Uretim
Sisteminde Toplam Enerji Tiikketimini Ve Toplam
Teslim Gecikme Siiresini Minimize Etmek I¢in Enerji
Odakli Cizelgeleme Optimizasyonu

0z

, yasal zorgiluluklar ve sirket giderlerinin diistiriilmesi gibi bircok nedenden dolay1 enerji yogun {iretim

sistemleri i¢in enerji t mak 6nemli bir hedef haline gelmistir. Bu nedenle, bu makalede tiretim sistemlerinde enerji
odakl ¢izelgg ine odaklanilmistir. Sira bagimli hazirlik siireli (SBHS) tek makineli bir @iretim sisteminde farkli gelis
zamanlarig enerji tiiketimini ve toplam teslim gecikme siiresini minimize etmeyi saglayan bir karma tamsay1l
dogrus, ma (MINLP) modeli gelistirilmistir. Problemi ¢6zmek igin sezgisel bir yontem olan genetik algoritma
(G dakll genetik optimizasyon (EGOP) yéntemi onerilmistir. Onerilen yontemin performansini degerlendirmek
ici e hesaplama siireleri analitik ¢6ziim ve General Algebraic Modeling System (GAMS) ¢6ziim ile

Anahtar eler: Enerji tiiketimi, genetik algoritma, is cizelgeleme, sira bagimh hazirhk siiresi.

1. INTRODUCTION fossil fuels and CO, emissions [1]. In addition, energy

Due to global climate changes and limited energy —Management has become a key issue in manufacturing
resources, it has become a necessity to integrate energy ~ SyStems as customers prefer greener products and new
management into  decision-making processes in  €nvironmental regulations are made [2]. As aresult of all
manufacturing systems in order to reduce dependence on  these, various approaches and solutions have been
developed for energy efficiency in manufacturing
systems in recent years. Preventions have been tried to be
*Sorumlu Yazar (Corresponding Author) take_n_by increasing the efficient factor components or
e-posta : elif.tarakci@atlas.edu.tr avoiding inefficient components [3]. In the literature,

energy efficiency studies in the manufacturing system




can be grouped under two headings: First, some studies
aim to minimize energy consumption through
technological advances in production processes. Second,
other studies plan to decrease energy consumption by
adjusting the management parameters of the production
process, which is called energy-efficient production
planning. Energy-efficient production planning models
aim to minimize energy-oriented objectives such as
energy consumption, energy costs or greenhouse gas
emissions, along with traditional production planning
objectives such as inventory holding cost, installation
cost or total completion time. Since production planning
generally does not require large investments, energy
efficient production planning has become more popular
in practice instead of technological infrastructure
investments aimed at increasing energy efficiency in
production systems. Therefore, there has been an
increase in the number of scientific studies in this field in
recent years [4].

Reducing setup times is a significant work for better
production performance in a manufacturing system. The
total setup time depends on the number of setups and
each setup time. A long setup time affects the completion
time of each job and hereby the tardiness and the number
of tardy jobs. In addition, frequent setups and long setup
times cause idle energy consumption. A more effectiye
production approach should be integrated @i
manufacturing systems to reduce idle
consumption [5].

The setup times can be included in the proce
of the jobs in scheduling problems. If ener
scheduling is planned in the manufacturing
inclusion of setup times in the proces§i
will not make it possible to achieve
scheduling. The total sequenc
which varies according to
directly affects the
manufacturing system.

gy behavior of the

system. Especiall ine does not process a

job, the dec f/or?or run the machine at idle
is of gr terms of energy saving in
manu

A m that minimizes the total tardiness
and ergy consumption of the jobs with

times is an NP-hard (Non-Polynomial-
[6]. Scheduling problems that take into
account sequence-dependent setup times are among the
most difficult classes of scheduling problems [7]. As a
result, this scheduling problem with sequence-dependent
setup times and different arrival times that aims to
minimize the total tardiness and the total energy
consumption is also an NP-hard problem. This paper
aims to develop an energy-efficient scheduling with the
sequence-dependent setup times for a single machine
manufacturing system. Moreover, the proposed multi-
objective MINLP mathematical model decides on the
state of the machine when the machine does not process.

A heuristic method, GA-based EGOP, is proposed to
solve this NP-hard scheduling problem. Thus, the
literature is contributed. Since the problem is a multi-
objective  optimization  problem, non-dominated
solutions are obtained on the pareto front. The weighted
additive utility function is used to determine the best
solution among these pareto solutions.

One of the important studies in the field of scheduling
was done by Mouzon et al. (2007) who proposed a model
for reducing energy consumption. The study is based on
the fact that non-bottleneck machines consume large
amounts of energy while idling. So,
methods to minimize the energy

production equipment by operatj

words, they aimed togr energy
consumption while optifizirg n planning
targets. They also ulti-objective

to” minimize the
pletion time on a

mathematical progr
energy consumption a

single CNC showed that energy
saving ecision to run idle or turn
off nor= chine [8]. In another study,

ess in a single machine. They obtained the
jon among non-dominanted solutions by using
I Hierarchical Method [6]. Fang et al. (2011)
mended a  multi-objective  mixed-integer
pregramming model for a flow shop scheduling problem
that minimizes the makespan, the carbon footprint and
the peak total power consumption [9]. Dai et al. (2013)
developed an energy-efficient model for flexible flow
shop scheduling. They wused a genetic-simulated
annealing algorithm that shows the relationship between
the makespan and the total energy consumption to obtain
the feasible solution in the model. Experimental results
demonstrated that there is a conflicting relationship
between the makespan and the energy consumption [10].
Bruzzone et al. (2012) offered a mixed-integer
programming model for flexible flow shops. As a result,
by altering the original designing for an energy-aware
scheduling target, they were able to reduce shop floor
power’s peak by an acceptable worsening of the tardiness
and the makespan [11]. Shrouf et al. (2014) developed a
mathematical model that optimizes energy consumption
costs in a single machine production system by deciding
to idle, process or turn off the machine according to the
changing energy prices during the day. They used the GA
method to solve the model. They compared it with an
analytical method to evaluate the solutions obtained by
GA. As a result, they showed that production planning
according to lower energy pricing during the day
contributes to energy saving with the GA in large-scale
problems [12]. Fang et al. (2016) designed a single
machine scheduling problem to minimize the total
electricity cost of processing jobs under different
electricity tariffs. They analyzed the computational



performance of different approximation algorithms in
randomly generated samples [13]. Lee et al. (2017)
proposed a dynamic control algorithm to achieve energy
saving of a single machine depending on time-changing
electricity pricing without changing daily price rates
during the season. They generated a new MINLP model
that aimed to adjust the arrival times of jobs, the earliness
and the tardiness of jobs and the energy consumption
costs of the machine. They developed an efficient
heuristic approach based on continuous-time variable
control models and algorithm to solve the problem. They
ensured efficient solutions in a very short computation
time thanks to the scaled heuristic algorithm that provides
flexibility for production strategies and can be applied to
different production fields [14]. Li et al. (2020) aimed to
minimize the makespan, the total carbon emission and
the machine loading by designing a multi-objective
flexible job-shop scheduling problem with variable
processing speed constraint. To solve this optimization
problem, they created an improved artificial bee colony
algorithm [15]. Zhou et al. (2020) researched the energy-
efficient scheduling of a single batch processing machine
with non-identical job sizes and release times based on
the time-of-use electric tariff in order to optimize the total
electricity cost and the makespan. They solved this multi-
objective scheduling problem using a hybrid meta-
heuristic algorithm [16]. ®

There are many scheduling studies taking into acco
sequence-dependent setup times in the literature. Nail

times of the jobs in a two-stage flow sho
Possibilities were assigned to the mgchines
different features for processing di
problem focused on the impact o
on the total elapsed time andeg
operational cost when j#bs

Varmazyar and Salmasi i
number of tardy job

mixed-integer pring  model for this

problem an eta-heuristic algorithms
based on % he imperialist competitive
algorit] Wile g the problem. After small,
medi g random test problems were solved by
m i gorithms, a detailed statistical
experi the split-plot design was

algorithm. “They stated that the imperialist competitive
algorithm obtained worse solutions than other algorithms
in small and medium-sized problems, but the hybrid
algorithm based on the tabu search and the imperialist
competitive algorithm performed better than other
algorithms in large-sized problems [18]. Velez-Gallego
et al. (2016) investigated the job scheduling problems
with arbitrary release dates and sequence-dependent
setup times on a single machine in order to minimize the
makespan. They were able to achieve feasible solutions
with low computational cost thanks to a beam search

heuristic [19]. Li et al. (2018) aimed to minimize the
makespan and the energy consumptions in the hybrid
flow shop scheduling problem with the setup energy
consumptions [20]. Lu et al. (2017) developed a
permutation flow shop scheduling problem with
sequence-dependent setup time and controllable
transportation time in order to minimize the makespan
and the total energy consumption. They generated an
energy saving scenario that extends the working life of
the machines and saves energy. Then, they solved the
problem with a hybrid multi-objective backtracking
search algorithm and compared the regllts of the used
algorithm with NSGA-Il and MOEA/D. succeeded
in proving that used algorithm h
[21].

are explained in the th
solved by the
the GAMS,
chapter.
recom

nalytical solution and
e compared in the fourth
pter, results are evaluated and

SCRIPTION AND
MATICAL MODEL

paper, a multi-objective scheduling problem is
gned to minimize the total tardiness and the total
€rgy consumption of the jobs in a single machine
manufacturing system.

Setup times of the jobs are mostly included in the
processing times of the jobs in manufacturing systems.
Although the scheduling of all jobs changes, the total
processing time does not change. The processing energy
consumption of the machine per unit time is the same, so
the amount of energy required to process all jobs does not
change. If energy efficiency is desired, the amount of
energy consumed during sequence-dependent setup
times will be significant. If the job scheduling changes
the total sequence-dependent setup time will change and
this will affect the energy consumption behavior of the
system. In addition, whether the machine runs at idle
during the remaining time excluding the sequence-
dependent setup time between two consecutive jobs is
another important factor affecting the energy
consumption of the system. Therefore, this paper
proposes a mathematical model to reduce energy
consumption by deciding job scheduling and whether the
machine runs at idle or is turned off/on.

The break-even duration (Teep) is defined as the
minimum time required for turning off/on the machine.
If the idle energy consumption and idle time of the
machine is greater than the energy consumption and time
required for turning off/fon the machine, the machine
must be turned off to consume less time and less energy
[22]. Equation (1) is given as:



Tgep = max (Eon-off/ P, Ton-off) (1)
There are two decisions that affect total energy
consumption behavior in the multi-objective model. The
first decision is the scheduling of jobs. The second is that
the machine runs at idle or is turned off/on.

The research problem is explained on a 3 jobs problem
with the single machine. The processing times, the arrival
times, the due dates and the sequence-dependent setup
times in hours are given below in Table 1 and Table 2.
The idle energy consumption per unit time (P;) is 10 kW,
the setup energy consumption per unit time (Py) is 20
kW, the energy consumption when the machine is turned
off and then on (Eon-off) is 30 KW.h, the time for turning
off/on the machine (Tonoff) is 1 h and Tgep is calculated
below and 3 h. These values are randomly generated.

TBED = max (Eon-off/ PI f Ton-off) = max (30 / 10, l) = 3 h

Table 1. Processing times, arrival times and due dates of the
3 jobs problem

Jobs | Processing time | Arrival time | Due date
j1 3 0 12
J2 2 14 27
ja 4 8 18
P N
Table2. Sequence-dependent setup times of the 3 jobs
problem
Sequence-dependent j1 J2 js ,
setup time
jo 2 1 2
J 0 1 5
J2 4 0 4
J3 3 1 0
When the p job Ygompleted, if the subsequent job

time between consecutive jobs is completed. However, if
the subsequent job is not yet in the manufacturing system
when the previous job is completed, it is decided to run
or turned off/on the machine during the remaining time
after excluding setup time between consecutive jobs to
avoid excessive energy consumption. In addition, the
setup process can be completed before a job arrives in the
manufacturing system.

Gantt chart for some feasible solutions is demonstrated
in Fig. 1. The total tardiness and the total energy
consumption calculated as a result of scheduling are
given in Table 3. When the results are i i
be seen that Solutionl is better tha
Solution3 is better than Solutio

mption of

dSolution3 show
that the two objectives ite correlation with

each other.

are obtained as a result of two
It clearly shows that different
ge the total setup energy consumption and
e-dependent setup times should be considered
in afjenérgy-efficient model.

feasible solutions are shown in Fig. 2. Solutionl
and Solution3 marked in red on the Pareto front are non-
dominanted solutions. The decision-maker may choose
one of these non-dominant Pareto solutions. At this stage;
depending on the priority of the manufacturing system,
the decision-maker can choose one of these two non-
dominanted solutions or make a decision using a method.
The weighted additive utility function is preferred to
decide on the best solution in this paper.

is in th cturindp’System for processing, the
subsegé®nt j ed without delay after the setup
[ oo o D e N
2 Solution2 Hos :Iiilé:Hsz- H21 _
-
£ couions v T - -
soutions  Hor [N~~~ roeheoon Ho [ v SN
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10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Time

Fig. 1. Gantt chart for some feasible solutions of the 3 jobs problem



Table 3. Total tardiness and total energy consumption values
of the 3 jobs problem

Solution Total Total energy
tardiness consumption
Solutionl 0 160
Solution2 11 150
Solution3 6 120
Solution4 6 170
—~ 200
g 190
X 180
§ o &
2 104
5 150 &
S
>
2 120
§ 110 ’
E 100
2 0 2 4 6 8 10 12
Total Tardiness (h)

Fig. 2. Some feasible solutions for the 3 jobs problem

2.2 Problem Assumptions

e The processing time, the arrival time, tl
and the sequence-dependent setup times
are known before scheduling.
The machine can process one jolj &
A job cannot be interrupted il i
Jobs are independent of
The machine is
manufacturing syst

in the

e Thetime required for turning off/on the machine and
the average energy consumption during that time are
fixed.

e The average idle energy consumption of the machine
per unit time is fixed.

2.3 Mathematical Model

A multi-objective mathematical model that minimizes
the total tardiness and the total energy consumption in a

single machine manufacturing system is presented
below.

Parameters and decision variables

n is the number of jobs
i and j are the index of jobs (iand j =1,2,...,n)
P; is the processing time for job j

Cijis the completion time for job j

dj is the due date for job j

rj is the arrival time for job j
Tjis the tardiness for job j
S;jis the starting time for job j
Hj; is the sequence-depend

e Pjistheidle energy?
the machine runs aj4

en consecutive job i and job j
ij is the state of the machine during the remaining
ime after excluding setup time between two

consecutive jobs (job i and job j are two successive

jobs) when the machine runs at idle

0, If the machine runs at idle
Yij=
1, Ifthe machine is turned off

1, Ifjobiis processed just before job j

0, otherwise

Objective functions
min (X7, max (Cj—dj,0)) Vj=12,..,n 2

min (Pu X7 X714 Hij . Xij +
(P1 Yoy X1z ((Sf =€) — Hi) (1 = Yij) Xij +
o1 X o1z (Eon—off) Yij Xij ) ®)



Constraints
((Sj — C) — Hij) = ajj 4

0, ay<Teep Vj=12,..,n
Yij=
1, ay>Teep Vi=012,..,n#j (5
Sj=Tj Vi=12,..,n (6)
Ci+ Hij, rj<Cj+Hjj
Sj=
r, rj > Ci+Hij
Vi=12,..,n Vi=012,..,n#j @)
Yo Xij=1 Vi=12,...,n#1i (8)
Cj=3Sj+Pj vVi=12,..,n
Sj >0 vVi=12,..,n
Co=0

inimiz tot
tardiness of all jobs. Equation (3) state
minimize total energy consumptj
the remaining time after excladi
consecutive jobs. Equatj

should be turned off.
cannot be processed on

to the starting time of this job. Equation (8) indicates the
status of consecutive jobs. Equation (9) ensures that the
completion time of a job is equal to the sum of the starting
time and the processing time of that job. Equation (10)
imposes that the starting time of a job is equal to or
greater than zero. Equation (11) guarantees that the
completion time of a default job at the initial position in
a job scheduling is zero.

3. STRUCTURE OF PROPOSED EGOP METHOD

In this paper, the EGOP method based on GA, a heuristic
method, is developed to solve the multi-objective
optimization problem. The flow chart of the EGOP
method is presented in Fig. 3.

3.1 Encoding Representation

Since the problem is a scheduling problem, each job is
expressed with an integer. Integers from 1 to n are
generated in scheduling for n jobs. These numbers
represent jobs, that is, genes. Each the different
sequences of n jobs symbolizes a so , hamely a

single
2,3,4,5
uences such
as 12345, 25431, 5 lution for the
problem.
3.2 Ger&’a f Population

iial population are randomly
in Constraints. If the first job at the
in the manufacturing system or the
t setup still remains when the job
granufacturing system, the job is processed

dent setup time, the arrival time of the first job is
to the starting time of this job. The setup is
completed just before processing. Moreover, the machine
is turned on just before the setup of the first job. If the
second job is available in the manufacturing system at the
completion time of the first job, the second job is
processed after the sequence-dependent setup. However,
if the second job is not available in the manufacturing
system, the second job is processed when it arrives at the
manufacturing system. Other jobs in the sequence are
scheduled in the same way.

3.3 Fitness Function

Fitness functions are used to determine the quality of
solutions in the relevant population. GA evaluates
solutions according to their fitness function. The higher
fitness value of an individual is, the higher the chance of
being chosen in the next generation is. In general, fitness
depends on the objective function. In this paper, U(k)'
(Equation 15) is transformed into a fitness function F(k)
for solution k (Equation 12) as follows [10]:

F(k)=1/U(k)’ (12)



[ Generate initial population ]

A

N

7L Calculate the fitness value of individuals ]

—b[ Perform selection operation ]

y

Yes [ Perform crossover operation ]

y

[ Perform mutation operation ]

No

[ Calculate fitness value of new individuals ]

Is elitism
performed?

Is the fitness value of the best
individual in the first population
greater than the fitness value of the
best individual in the new
population?

Is generation
number reached?

l Yes

Perform elitism ]

A

[ Output the individual with the highest fitness value ]

Fig. 3. Flow chart of the EGOP method

345 efation
Reprodu perations allow better individuals in a
population £0 replicate more [23]. The aim is to eliminate

individuals with lower fitness values and to reproduce
individuals with higher fitness values more [24].

In this paper, the stochastic universal sampling is used as
the selection operation. Although individuals with higher
fitness value are more likely to be included in the next
generation, individuals with lower fitness value can also
be prevented from disappearing completely in this
method. This allows the algorithm to search at more
points and obtain a better solution [25]. Steps of the

stochastic universal sampling selection operation are
described below:

The roulette wheel is divided into n equal parts for n
chromosomes in the population.

Fitness values are found for each chromosome and
the probability function (Equation 13) is calculated
as follows [26]:

P=Fel Qi F) (13)

F = Fitness function of chromosome k
P« = Probability function of chromosome k
n = Population size



iii. Individuals are placed on the wheel according to
their probability values. A random number is
generated. Other numbers are calculated by adding
1/n to the generated number. Chromosomes are
selected according to the numbers falling into the
area covered by the chromosomes.

3.5 Crossover Operation

In this paper, the order-based crossover [25] is converted
into a suitable crossover operation considering the nature
of the problem. The steps of the crossover operation are
described below:

i. Individuals are selected in the current population
according to the determined crossover rate.

ii. Selected individuals are matched randomly.

iii. Random numbers 0 and 1 are generated for each
gene of the first individual. At this stage, genes are
selected according to which of 0 and 1 is more, to
eliminate the possibility of no crossover operation.
The values of the selected genes are marked in the
second individual. The genes selected in the first
individual replace genes marked in the second
individual, respectively. The same crossover
operation is applied to the second individual.

iv. The offspring replace parent individuals.

An example of the crossover operation for 6 job.s
illustrated in Fig. 4. Random numbers 1 and 0
generated for the first parent. The 1st, 4th, 5t
genes (2, 1, 3 and 6 jobs) indicated by the n
the first parent are selected. 2, 1, 3 and
determined in the second parent. 2, 1,
first parent replace the same jobs |n
respectively. Thus, the second

same procedure is also applied,i
child. }\

Stagel Stage?
Parents:  Pi: 2-4-5-1-3-6 Py: 5-2-6-4-1-3
100111 100111
P,: 5-2-6-4-1-3 Pi: 2-4-5-1-3-6
Offspring: Cj: 5-2-1-4-3-6 Cy: 2-5-4-1-3-6

Fig. 4. An example for order-based crossover operation

3.6 Muta peration

The arbitrary two-job change [25] is chosen as the
mutation operation. The steps of the mutation operation
are described below (Fig. 5):

i. Individuals are selected in the current population
according to the determined mutation rate.

ii. Two genes are randomly selected from each
individual and then these genes are displaced.

iii. The Offspring replace parent individuals.

Parent: P;:  6-3-5-2-4-1

Offspring: Ci:  6-1-5-2-4-3

Fig. 5. An example for arbitrary two-job
change mutation operation

3.7 Elitism

Elitism is a method applied to preserve elite solutions so
that they do not disappear during evolutionary
process. This method can generall
convergence of GAs [27]. Th

an the solution Si+1, the
population Py+1 is removed
ion and the best solution Sk in the
dded to the population Py+1 [28].

efion in this paper. The algorithm stops when it
aghes the specified number of generations. The
individual with the best fitness value in the final
population becomes the solution to the problem [26].

4. COMPUTATIONAL PERFORMANCE AND
DISCUSSION

In this chapter, different job problems are solved by the
EGOP method, the analytical solution and the GAMS.
The obtained results are analyzed.

4.1 Analysis Of Proposed EGOP Method In The
Scope Of 5 Jobs Problem

In order to make the proposed EGOP method more
understandable, the 5 jobs problem is analyzed. The
processing times, the arrival times and the sequence-
dependent setup times of the jobs are created between [1,
101, [0, 50] and [1, 5] for the datasets of all scheduling
problems, respectively. The due dates of the jobs is
generated between [(P; + rj+ Hma), (Pj+ rj+ Hmax +
4 YL, Pj/n)] values with the formula taken from Kurose
and Ross (2013) [29]. The idle energy consumption per
unit time is 10 kW, the setup energy consumption per unit
time is 20 kW, the energy consumption when the
machine is turned off and then on is 30 kW.h and the time
for turning off/on the machine is 1 h. These values are
randomly generated and Tgep is 3 h. The same values are
used in all problems.



The processing times, the arrival times, the due dates and
the sequence-dependent setup times for a 5 jobs problem
are given below in Table 4 and Table 5. Control
parameter values are given in Table 6. The results of the
EGOP method, the GAMS and the analytical solution are
obtained using the MATLAB program on a computer
with Intel (R) Core (TM) 15-3470 CPU 3.20 GHz, 4.00
GB RAM and 64-bit processor.

Table 4. Processing times, arrival times and due dates of the
5 jobs problem

Jobs | Processing time | Arrival time | Due date
J1 8 0 32
J2 10 4 30
Js 8 2 33
Ja 3 10 22
Js 10 4 31

Table 5. Sequence-dependent setup times of the 5 jobs

problem
Sequence-dependent | j1 | j2 | j3 | Ja | Js
setup time
Jo 2115 |2]|5 .
I 0|14 |5 1|1
J2 4 102 |4]3
IE 3]11(0|1]|5
Ja 312 |4|0]|5
Js 113|2]|21]0 ,
A
Table 6. Control parameter values of the 5 jobs problem
Parameter Value
Population size 10
Crossover rate 1
Mutation rate 0.5
Generation number 5

n-dominanted pareto solutions

minimize total tardiness and the total energy
consumptidn. Various approaches have been improved to
solve multi-objective optimization problems. In this
paper, the weighted additive utility function, which is one
of the best-known methods due to its simplicity, wide
usage and ability to determine non-dominanted solutions,
is used to decide the best solution of the multi-objective
problem. fi and fy are the first and second objective
functions of chromosome k in the population,
respectively. The weighted additive utility function U(k)

(Equation 14) for chromosome k with two objectives can
be defined as follows [10]:

U(k): Wy o+ W fox (14)
w; and w; are the importance weights of each objective
function. The sum of the weights should generally be
equal to one (w;y + w, = 1) and each of the weights is a
positive number (w1>0 ; w2 > 0).

The weight of each objective is determined by the
decision-maker. All objective functiog are converted
into a single objective function in orde
In addition, it is difficult to assess i

(16)

fo' =k Xioy f2k

(17)

Table 7 shows the solutions obtained by the EGOP
method for the 5 jobs problem. The total energy
consumption of Solution6 is smaller than the total energy
consumption of Solution10. The total tardiness of
Solution10 is smaller than the total tardiness of
Solution6. Solution6 and Solution10 are non-dominated
solutions. At this stage, one of the solutions is selected
using the weighted additive utility function. It is decided
that importance weights are equal and 0.5. Solution6 is
obtained as the best solution. The computation time is
0.172s.

Table 7. Total tardiness and total energy consumption
values obtained by EGOP method for the 5
jobs problem

Solution Total Total energy

tardiness | consumption
Solutionl 36 300
Solution?2 39 200
Solution3 55 380
Solution4 42 200
Solution5 43 260
Solution6 30 160
Solution7 38 300
Solution8 56 260
Solution9 32 160
Solution10 27 180




Fig. 6 shows all _50|Uti0n5 obtained by the ana_lytical Table 9. Processing times, arrival times and due dates of the
solution for the 5 jobs problem under the constraints of 6 jobs problem

the model. Red dots are non-dominated solutions on the P— : :
pareto front. The total tardiness and the total energy J(?bs Processing time | Arrival time | Due date
consumption of these non-dominated solutions are given J1 8 25 57
in Table 8. Solutionl is obtained as the analytical solution j2 7 45 82
using the weighted additive utility function. The ja 5 35 63
computation time is 0.103 s. In addition, the same i 6 35 65
problem is solved by the GAMS. The total tardiness and a
the total energy consumption is obtained as 30 and 160, J_5 5 6 18
respectively. The computation time is 45.981 s. The Js 9 10 25
EGOP method finds the solution obtained by both the
GAMS and the analytical solution in a short time.
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Fig. 6. All solutions obtained by analytical solution for the 5 jobs problem

Table 8. Non-dominated solutions obtained by analytical

solution for the 5 jobs problem Table 10. Sequence-dependent setup times of the 6 jobs
Solution Total Total energy problem N —
tardiness | consumption Sequence- o |2 | I3 | Ja | J5 | o
Solution1 30 160 dependent
Solution2 27 180 setup time
Jo 3 |5 |4 (4 |1 |2
4.2 osed EGOP Method I 0 12 |2 |5 |5 |1
T ctiveness of the EGOP method in Jo 3 10 |5 |5 |2 |5
terms sultsand the computation times, the 6, 7 and 8 ja 2 |3 |0 |5 |1 |3
jobs pro are solved by the EGOP method, the ja 5 |4 |5 |lo |4 |5
GAMS and’the analytical solution. The processing times, i > 12 12 15 1o |3
the arrival times, the due dates and the sequence- _5
dependent setup times for the 6, 7 and 8 jobs problems Js 2 |4 |3 |1 |1 ]o0

are given in Table 9, Table 10, Table 11, Table 12, Table
13 and Table 14. Control parameter values are given for
the 6 jobs problem in Table 15 and for the 7 and 8 jobs
problems in Table 16. The EGOP method, the analytical
solution and the GAMS results and the computation
times are given in Table 20.



Table 11. Processing times, arrival times and due dates of
the 7 jobs problem

Jobs | Processing time | Arrival time | Due date
J1 3 3 14
J2 8 39 63
is 1 11 26
Ja 6 8 36
Js 9 3 18
Je 4 3 12
J7 1 14 36

Table 12. Sequence-dependent setup times of the 7 jobs
problem

Sequence- | ji | j2 | Js | Ja | Js | J& | J7
dependent
setup time

jo
1
j2
i3
Ja
is
Js
7

I I RN I RS K=K,
Rl wlRrNw oo~
ANl O| R w|lw
DR Oo|wl w| NN
W kR|lolwlkrl~ols
N Oo|lw| Wk w|lou
Ol kR|w N U k| w|ou

([ &

Table 13. Processing times, arrival times and due dates of )
the 8 jobs problem

Jobs | Processing time | Arrival time | Due date

I 1 40 61

J2 3 23 40

Js 5 5 17

ja 2 47 72

Js 5 7 34

Js 8 11 36

J7 9 48 79

Js 3 5 18
421 se st ),/With 6 jobs problem
All solutiof¥”and non-dominated solutions with red dots

obtained by the analytical solution for the 6 jobs problem
are illustrated in Fig. 7. Non-dominated solutions
obtained by the analytical solution for this problem are
presented in Table 17. Solutionl is determined as the best
solution among the non-dominated solutions in the
analytical solution. The total tardiness and the total
energy consumption are obtained as (0-320) by the
GAMS, respectively. The proposed EGOP method finds
the total tardiness and the total energy consumption of the
jobs as (0-330), respectively. The EGOP method
achieves the same solution obtained by the analytical

Table 14. Sequence-dependent setup times of the 8 jobs
problem

Sequence- | ja | j2 | s | Ja | Js | o | 07 | Js
dependent
setup time
Jo 4 (31|12 |5|4 /41|14
J1 0|42 |4]|4]|12 5|5
J2 5/0]4|5|3|4]|5]|5
J3 513]0|5|2]|2]|5]|1
ja 2|55 |0|1|4]2]|5
Js 3|5|51|]0(1]4]|1
Js 5/1]|5|5|1]0]1]|1
J7 115|142 |2|5|0]|5
Js 515111354210
A - |
Table 15. Control parameter values of the 6 jobs problem
Parameter Value
Population size 15
Crossover rate 1
Mutation rate 0.5
‘ Generation number 20

N

Table 16. Control parameter values of the 7 and 8 jobs

problems
Parameter Value
Population size 40
Crossover rate 1
Mutation rate 0.5
Generation number 70

solution. The EGOP method obtains the same tardiness
value as the GAMS, but the total energy consumption
obtained by the EGOP method is 3.125% more than the
total energy consumption obtained by the GAMS. On the
other hand, as seen in Table 20, the EGOP (computation
time= 0.524 s) calculates in a shorter time than the
GAMS (computation time= 218.297 s) and the analytical
solution (computation time= 1.863 s).

Table 17. Non-dominated solutions obtained by analytical
solution for the 6 jobs problem

Solution Total Total energy
tardiness consumption
Solutionl 0 330
Solution2 4 310
Solution3 7 300
Solution4 18 290
Solution5 37 250
Solution6 106 240




530

480

430

380

Total Energy Consumption (kW.h)

Total Tardiness (h)

120 150 180 210

Fig. 7. All solutions obtained by analytical solution for the 6 jobs problem

4.2.2 A case study with 7 jobs problem °

All solutions and non-dominated solutions with red®iq
obtained by the analytical solution for the 7 jobs probl
are demonstrated in Fig. 8. Solution2 is obtained,as §

Table 20, it is clearly seen
best solution obtained
(computation time=

solution
the GAMS

Table 18. Non-dominated solutions obtained by analytical
solution for the 7 jobs problem

Solution Total Total energy
tardiness consumption
Solutionl 10 290
Solution2 12 280
Solution3 39 240
Solution4 52 220
Solution5 176 210

4.2.3 A case study with 8 jobs problem

In Fig. 9, all solutions and non-dominated solutions with
red dots obtained by the analytical solution are shown for
the 8 jobs problem. In the first step, by the analytical
solution, Solution4 is obtained as the best solution among
the non-dominated solutions represented in Table 19. In

step% prove that EGOP is a viable solution
OP method is run. As a result, the EGOP
s the same feasible solution (5-310) as the
tical solution. In the last step, the total tardiness and
ptal energy consumption are found by the GAMS as
30), one of the pareto solutions, respectively. The
total tardiness value obtained by the GAMS is smaller
than the total tardiness value obtained by the EGOP
method, but the total energy consumption value obtained
by the EGOP method is smaller than the total energy
consumption value obtained by the GAMS. As seen in
Table 20, the EGOP method performs another non-
dominated solution, which is not worse than the non-
dominated solution obtained by the GAMS (computation
time= 18633.677 s), in a remarkably short computation
time of 5.944 s. Similarly, the EGOP method solves this
problem in an extremely shorter computation time than
the analytical solution (computation time= 6162.845 s).

Table 19. Non-dominated solutions obtained by analytical
solution for the 8 jobs problem

Solution Total Total energy
tardiness consumption
Solutionl 0 400
Solution?2 1 370
Solution3 3 330
Solution4 5 310
Solution5 71 290
Solution6 74 270
Solution7 121 250
Solution8 241 240




Table 20. Comparison of total tardiness and total energy consumption values and computation times obtained by EGOP method,
GAMS and analytical solution

Total Tardiness (h)

EGOP method GAMS Analytical solution

Jobs Total Total energy | Computation Total Total energy | Computation Total Total energy | Computation

tardiness | consumption time tardiness | consumption time tardiness | consumption time
6 0 330 0.524 0 320 218.297 0 330 1.863
jobs
7 12 280 5.539 12 280 5437.015 12 280 100.495
jobs
8 5 310 5.944 3 330 18633.677 5 310 6162.845
jobs
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Fig. 8. All solutions obtained by analytical solution for the 7 jobs problem
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Fig. 9. All solutions obtained by analytical solution for the 8 jobs problem




4.3 Discussion

In scheduling problems, as the complexity level of the
problem increases, it is difficult to find an exact solution
and takes considerable a long time to solve the problem.
For this reason, GA, which is one of the heuristic
methods, was preferred to obtain feasible solutions in
acceptable time in several scheduling studies
[12,26,27,28] in the literature.

Shrouf et al. (2014) developed an analytical solution to
obtain the optimal solution. They stated that the
analytical solution provided the appropriate solution in
an acceptable time for short problems, but GA was
preferred because of the much shorter computation time
for longer problems [12].

In this study, a comparison of the EGOP method, the
analytical solution and the GAMS solution is presented
in order to demonstrate the effectiveness of the proposed
GA-based EGOP method. The results and computation
times presented in Table 20 prove that the proposed GA-
based EGOP method obtains feasible solutions in a much
shorter time than the analytical solution and the GAMS.

5. CONCLUSION

Setup times can frequently be included in the processing
time of jobs in the scheduling problems. As the Schedgle
of the jobs changes, the total sequence-dependent $tye
time changes. If energy consumption is to be reduced
a manufacturing system, sequence-dependent setug ti
should be considered. In this paper, first,
mathematical model that takes into account
consumption is developed for a single
scheduling problem with sequenc

have different arrival ti
consumption.

GA-based EGOP
hard problem. In
EGOP method, the

[ d the analytical solution.
ed by the proposed EGOP
and the analytical solution. It is

e e to obtain a single feasible solution
that h Iést values of the two objectives among
the non- ed solutions on the pareto front in multi-

lems. Hence, the weighted additive utility
function is used to obtain the best solution among the
non-dominated solutions.

Computation time is an important criterion for
manufacturing systems. At the same time, job scheduling
is a key issue so as not to delay the jobs in manufacturing
systems. Therefore, various mathematical and heuristic
methods are used to solve scheduling problems in
manufacturing systems. As in this paper, to obtain a
feasible solution, all solutions can be obtained or a
program such as the GAMS can be used according to the

structure of the problem. However, it may take a long
time to obtain a viable solution with these methods.
Especially, as the number of jobs in a scheduling problem
increases, the computation time can become extremely
high. For this reason, an heuristic algorithm that provides
a feasible solution in a much shorter time can be preferred
for scheduling problems. When the computation times
and solutions obtained by the proposed EGOP method,
the GAMS and the analytical solution are examined in
this paper, it is clearly seen that the EGOP method is an
effective method to solve this multi-objective scheduling
problem. So, the proposed EGOP
preferred to solve larger job problems.
computation times also verify t

efficiency
features such

machine systems. In a
mathematical
when djffer
separatetj

mption prices occur in
manufacturing environments.
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