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Abstract
In engineering problems, the concepts of design and optimization are two basic topics that are related to each other. The problem owner 
should prioritize the design or optimization on each other. In this regard, two different ways can be followed in engineering problems: 
firstly designing and then optimizing or using optimized parameters in the design process. In this study, the basic design parameters of a 
capesize bulk carrier for a specific purpose were created and exemplified on a model. The prototype development problem is handled as 
a multi-criteria optimization problem by creating appropriate and pareto optimal solutions. Parameter Space Investigation method was 
used to solve this optimization problem, and this method was applied in a program called Multi-criteria Optimization Vector Identification. 
As a result of the study, the design parameters of the capesize bulk carrier sample were created and the objective function criteria were 
obtained better than the prototype and the value in the literature.
Keywords: Ship design parameters, Capesize bulk carrier, Parameter space investigation, Multi-criteria optimization vector identification

1. Introduction
Maritime transportation has played a significant role in the 
advancement of societies throughout history, facilitating 
increased commercial activities and contributing to their 
wealth and power [1]. In recent years, the importance 
of marine transport in the logistics sector has steadily 
increased. The cost is cheaper, many materials can be 
transferred at a party, and delivery conditions are more 
appropriate are reasons for growing demand in this sector. 
Increasing competition with globalization and the rapid 
development of international trade as a result of this have 
made maritime transportation an important mode of 
transportation that directly affects the foreign trade level 
and economic competitiveness of countries [2].
The Coronavirus disease-2019 (COVID-19) pandemic 
experienced recently has also revealed the importance of 
logistics and supply chain for countries. Although faced with 
applications such as restrictions and quarantines during 
the COVID-19 pandemic, maritime transport was relatively 

less affected by the pandemic process among all modes of 
transport. The “Review of Maritime Transport 2021” report 
prepared by the United Nations Conference on Trade and 
Development points out that although the coronavirus 
pandemic disrupted maritime transport, this decline was 
not as dramatic as expected. When maritime transportation 
was interrupted in the first half of 2020, it started to recover 
in the second half of the year and maritime trade increased 
by 4.3% in 2021 [3]. Ships provide more than 80% of world 
trade, so disruptions in ports and shipping routes mean that 
food, energy, medicine and other essentials do not reach 
those in need [4]. For this reason, marine transportation 
and platform needs are expected to grow.
As of January 1, 2022, the countries with the most ships in 
terms of dead weight tonnage and commercial value were 
Greece, China, and Japan. The maritime transport supply 
continues to be dominated by three countries (China, the 
Republic of Korea and Japan), which together hold 94 
percent of the market in 2022 [5]. When examined in Türkiye 
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using all modes of transport in foreign trade activities, the 
largest share in both imports and exports in the 10-year 
period covering the years 2011-2021 belongs to maritime 
transport, based on the value of the goods transported, as 
seen in Table 1.
The type and characteristics of the ships that make up 
the merchant fleet, which is the most important element 
in maritime transport, are of great importance. As can be 
seen in Table 2, when the DWT and number of ships of 150 
GT and above in the Turkish merchant marine fleet are 
examined in the last 5 years, it is seen that 42 bulk carriers 
have been owned for 2022 and bulk carriers constitute 25% 
of the total deadweight [6].
Bulk carriers are used to transport goods (scrap, grain, 
logs, wood products, sand, etc.) iron ore, coal, and grain 
are the main cargoes of international bulk freight, as they 
are transported in large quantities. There are different 
types and capacities of ships in bulk cargo transportation. 

Generally, ships up to 10,000 DWT are known as small bulk 
carriers, while ships with larger payloads are known by 
some special names. In this context, Handysize (10,000-
30,000 DWT), Handymax (30,000-50,000 DWT), Panamax 
(50,000-92,000 DWT), Post Panamax (92,000-120,000 
DWT), Capesize (120,000-182,000 DWT) abbreviated the 
names of ships larger than 200,000 DWT as VLBC (Very 
Large Bulk Carrier) [7]. The design of ships and marine 
vehicles in general can be counted among the most complex 
engineering problems [8].
“Ship Design Optimization” is frequently used by designers 
and shipyards, and it causes different interpretations in 
the relevant parts of the sector, and its boundaries must be 
defined [9]. The use of optimization models in ship design 
dates back to the 1960s. Ship design problems have various 
conflicting objective functions. Both conventional methods 
are used in solving multi-criteria problems, and current 
multi-criteria approaches could be seen.

Table 1. Percentage shares of transportation types in import and export by years (on a value basis)
Years

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Road Transportation
Import 21.97 20.26 18.69 18.23 19.09 19.16 18.01 17.88 20.56 21.14 20.79

Export 37.6 33.35 35.66 35.29 32.7 31.62 29.59 28 30.36 31.61 30.85

Airway Transportation
Import 10.62 12.23 15.21 12.07 11.11 12.83 16.33 14.4 16.17 19.82 11.08

Export 6.42 14.4 8.61 9.01 12.1 12.54 10.98 8.25 8.28 7.58 8.4

Maritime Transportation
Import 65.85 66.31 65.28 69.11 69.14 67.22 65.1 67.09 62.47 57.96 66.91

Export 55.05 51.57 55.1 55.11 54.64 55.39 58.99 63.31 60.82 60.04 60.01

Railway Transportation
Import 1.57 1.21 0.83 0.59 0.65 0.8 0.56 0.62 0.8 1.08 1.23

Export 0.93 0.67 0.64 0.59 0.56 0.45 0.44 0.44 0.54 0.77 0.74

Source: [3]

Table 2. DWT and number development of the Turkish merchant fleet (vessels of 150 GT and above), 2018-2022

The Type of Ship 
2018 2019 2020 2021 2022

Number DWT Number DWT Number DWT Number DWT Number DWT

Dry Bulk Carriers 323 1,245,588 298 1,148,389 278 10,71119 251 945,737 196 807,374

Bulk Carriers 64 2,636,897 56 2,225,010 46 17,14108 45 1,692,176 42 1,769,522

Container Ships 70 1,349,228 57 1,047,502 56 1,028,620 53 998,316 59 1,097,971

Tankers 184 2,023,011 178 2,085,755 181 2,188,978 185 2,179,130 190 2,452,630

Passenger Ships 308 89,923 311 90,924 308 86,697 306 81,458 445 128,165

Services Ships 151 101,339 151 110,122 154 178,484 161 194,784 164 361,413

Tugs 152 2,776 165 2,598 173 2,710 181 2,710 175 18,836

Sea Vessels 258 34,715 272 38,483 286 38,731 297 48,143 314 352,775

Fishing Ships 293 8,358 314 8,503 337 8,542 375 8,586 401 38,932

Sport and 
Entertainment Boats 222 3,297 222 3,223 234 3,300 246 3,300 116 3,983

Total 2.025 7,495,133 2024 6,760,509 2053 6,321,289 2100 6,154,340 2102 7,031,603

Source: [6]
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In prototype development problems, optimization is 
performed by considering multiple criteria [10]. To solve the 
prototype development problem, operational development 
of the prototype requires two phases [11].
Statnikov et al. [10] indicated that the first step is to 
determine the mathematical model of the object and its 
parameters based on different tests. To this end, it would 
be advantageous to solve the identification problem based 
on certain adequacy criteria (proximity). In the second 
step, an expert formulates and resolves the multi-criteria 
optimization problem using the mathematical model and 
the performance criteria determined in the first step. 
Depending on the optimization results, the prototype is 
improved and object tests are repeated. It is repeated until 
an expert decides to stop the operational development 
process.
The Parameter Space Investigation (PSI) method was used 
in multi-criteria analysis in this study, which constructed 
feasible and Pareto optimal solution sets while also 
improving the prototype’s key performance criteria by 
altering the constraints of design variables, functional 
relations and criteria. The PSI method is applied with 
the Multi-criteria Optimization and Vector Identification 
(MOVI) program.
Multi-criteria analysis of a ship design model using the PSI 
technique was first performed at St. Petersburg State Naval 
Technical University by M. Berezanskii and Y. N. Semenov. 
A prototype ship (UT-704) was intended to improve 
performance benchmarks [12].
In this study, the PSI method which has been widely 
used for the solution of optimization problems related 
to manufacturing engineering, machine design, and 
mechanisms and it has been known for more than a quarter 
of a century, was employed [13].
In order to examine the surface texture of the Ti6Al4V 
titanium alloy following final turning under both dry and wet 
cooling conditions, Leksycki and Feldshtein [14] used the 
PSI method. They conducted research tests with the fewest 
possible test points. The test points were set sequentially 
in fixed positions. The steps involved positioning the points 
in a multidimensional space with their projection points 
equally spaced apart from one another on the X1 and X2 axes, 
respectively.
The study of Maruda et al. [15] described three cooling 
techniques for AISI-1045 steel turning: dry machining, 
minimum amount of cooling (MQC), and MQC with EP/AW 
(MQC + EP/AW) additives. The PSI method was applied 
to an increasing number of variables (variation of shear 
and emulsion mist generation parameters). A Kistler 
dynamometer type 9129AA was used to measure the shear 

force, and an MPS7 network parameter meter was used to 
measure the power consumption.
A novel approach for the development of force transducers 
based on strain gauges was put forth by Gavrilenkov et al. 
[16]. The approach depended on multi-criteria optimization 
techniques and PSI method.
Three elements of total cutting force and changes in chip 
shape when finishing turning 17-417-4 4 PH (precipitation 
hardening) stainless steel were analyzed by Leksycki et al. 
[17]. The cutting speed was 220 m/min, the depth of cut 
ranged from 0.2 to 1.2 mm, and the variable feed pattern 
ranged from 0.05 to 0.4 mm per rev. Minimum amount 
of lubrication was used during the studies which were 
conducted in both dry and wet cooling conditions. The PSI 
method was used to conduct this research.
Pagano et al. [18] examined the mechanism that causes the 
propagation of twist and sausage modes in the solar corona 
following the collision of counter-propagating flows and 
how the characteristics of the flows affect the characteristics 
of the waves produced. They used the PSI method to explain 
how the collision of coronal flows results in the generation 
of magnetohydrodynamic waves.
According to Maruda et al. [19], the condition of the 
machined surface of 1.4310 stainless steel after turning was 
examined in relation to the anti-wear additive Crodafos EHA-
LQ-(MH) added to emulsion mist. In the tests conducted for 
the formation of emulsion fog, the emulsion’s mass flow, the 
air’s volumetric flow, the nozzle’s distance from the shear 
zone range, and the PSI method were all used.
The PSI method was applied for the design of the L1 
flight control system installed on the dynamically scaled 
GTM AirSTAR aircraft powered by two turbines, and 
the preliminary results were presented in Xargay and 
Hovakimyan’s [20] study.
Anıl [21] investigated marine design engineering problems 
with PSI method. MIT Functional ship design optimization 
was conducted and pareto optimal solutions of design 
variables and criteria values were obtained.
In this study, the PSI method studies of Statnikov et al. [10-
12] PSI studies, the study of Anıl [21] and optimization 
model of Cudina [22,23] and Zanic and Cudina [24] are 
taken as the main references  for the optimal design of the 
model ship.

2. Ship Design Optimization
2.1. Motivation of the Study
The main purpose of ship design is to find the most 
economical alternative among the alternatives that 
provide the given design conditions. For this, many design 
calculations and controls need to be implemented for 
several alternative designs.
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Brown and Salcedo [25] point out that there are three 
components necessary for a systematic approach to ship 
design, and these three components are;
⦁ The creation of an effective and efficient design space, the 
objective function of containing well-defined measurable 
properties, and the use of an effective format for the 
expression of the design space.
⦁ Maximizing effectiveness.
⦁ Minimizing cost and risk are different characteristics and 
require different measurement methods.
These three different features cannot be combined into 
one function. It should be included in problem solving 
for simultaneous decision making and comparison. 
The effectiveness of ship designs can be analyzed using 
wargaming or other complex methods [25]. However, 
this approach is of little use when evaluating designs in 
a structured design space. The non-dominated solution 
represents a feasible solution in which the problem and 
the constraints are defined and there is only one best 
solution in the objective function. For example, in Figure 1 
there is a problem solution in which cost is minimized and 
efficiency is maximized. Decision-making authorities will 
determine preferred concept designs as one of the non-
dominated solutions to strike the balance between cost 
and effectiveness. Although ship design optimization is not 
new, it is a concept that contains several computational 
difficulties. The ship design space is  non-linear, discrete 
and bounded by various constraints and thresholds. It is 
estimated that 80% of a ship’s procurement cost remains 
unused during the design phase. Therefore, making critical 
design decisions is unable to be superficial. A methodology 
that will meet user needs, respect critical performance 
values, and integrate multiple factors into the objective 
function should be followed [25].
Ship designs were carried out using the basic ship design 
and the Evans-Buxton-Andrews spiral until the 1990s. 
In this spiral, it is assumed that the design process will 

be sequential, and the possibility of inclusion of life cycle 
issues is limited. Mistree et al. [26] proposed a new process 
for increasing ship design efficiency and effectiveness. This 
process emphasizes systems philosophy and simultaneous 
engineering in terms of the life cycle.
Mistree et al. [26] classify design processes in two groups 
as descriptive and predictive. Predictive methods include 
three main activities as analysis, synthesis, and evaluation 
and show a systematic approach. In this context, the Pahl 
and Bitz method in the literature is a systematic design 
approach developed in Germany. In this method, which 
is described as a predictive approach, product design is 
divided into functional stages. Thanks to the modules 
that can be designed independently, the design activity is 
simplified. On the other hand, design studies in the form 
of independent modules may cause some problems in the 
integration phase. It is possible to define the method in 
seven stages. In the first stage, the evaluation criteria are 
listed and in the second stage, these criteria are weighted. 
Then, operational measurement values are defined for 
the criteria, and then numerical values are assigned to 
each criterion. After finding the value of each criterion by 
multiplying the weights with the numerical values, the total 
value is reached. Alternatives are evaluated, with the highest 
value being the most optimal result. In the final stage, the 
results are checked to eliminate uncertainties and ensure 
consistency. On the other hand, descriptive approaches 
work under the leadership of a designer, and a solution is 
sought. The approach includes four activities as problem 
analysis, conceptual design, final design, and detail design. 
In addition, concurrent engineering design is an approach 
that considers the product life cycle from the conceptual 
design stage to inventory removal. It is an approach that 
focuses on the demands and priorities of the concurrent 
engineering needs authority, believes that quality occurs 
as a result of process improvement, and has the philosophy 
that process improvement is the unending responsibility 
of the entire enterprise. Although the concurrent design 
approach has a wide variety of application forms, three 
activities are generically valid in all of them. These; use of 
multifunctional teams for design, production and support 
processes; including computer-aided programs, and the 
search for solutions with various analytical methods to 
optimize product design, production and support processes 
[26].
Mistree et al. [26] state that Evans’ spiral model forms the 
basis of ship design activities. Brinati et al. [27] also state 
that the most used one among the different design models 
is the one developed by Evans.
As can be seen in Figure 2, transactions take place in 
sequential order [28]. It is also a labor-intensive and Figure 1. Cost-efficiency design space [25]
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expensive system. It is far from model information systems, 
which was used extensively in ship design in the past and 
has increased detail [26,27]. Although it is still used today, 
information systems are used for the solution. Optimization 
models are also used. According to Mistree et al. [26], 
optimization models shorten the calculations, the required 
amount of design variables and constraints can be included 
in the solution, and the optimal solution defined in the 
objective function can be found automatically. While single-
criteria decision-making models were used in the past, 
multi-criteria decision-making models have been used. 
For example, an optimization model was developed by 
sequential linear programing by Mistree et al. [26]. Thus, 
simultaneous engineering applications took place in ship 
design optimization applications, similar to Figure 3.
As stated by Shin and Han [29], in ship design optimization 
models, designers’ own variable spaces are formed and 
solution sets are created using very different programs. For 
example, while researchers were working with a computer-
aided design program, McGookin et al. [30] used a genetic 
algorithm for cruise control system optimization. On the 
other hand, Diez and Peri [31] applied the stochastic study 
to the ship design, thus reflecting the differences in expected 
value and standard deviation to the objective function, 
and based on the worst-case scenario conditions for the 
constraints. Yaakob et al. [32] remodeled the durability 
of fishing boats to reduce their cost, achieving 12% fuel 
savings with a slight modification. Papanikolaou [33] sought 
a solution for ship design optimization by applying system 
approach. 
Brinati et al. [27] stated that weight calculations such as 
structure, the machine group, and exterior design excluding 
cargo could be made with regression. Design models for 

other criteria were also presented by the researchers. 
Solutions of multi-objective combinatorial problems were 
examined by Ölçer [34] and it was indicated to use solution 
methods reached by evolutionary calculations. Ray et al. 
[35] developed a multi-criteria decision-making model 
and a ship design optimization model. Researchers using 
container design combined a general optimization tool, 
a decision-making model, and many ship architectural 
prediction models in this model. Structural design modeling 
requires the application of many more factors together than 
other modeling applications. For example, while range, 
speed, mobility, and control efficiency are important for 
missile capacity, speed, surface and underwater forms, 
dimensions, stabilization, and load status gain importance 
in ships [36]. Tanıl [36] derived an algorithm run in the 
MATLAB program to be used for missile exterior design. 
Thus, it is aimed to obtain the optimum configuration 
considering the parameters entered by the user during the 
conceptual design phase. Türkmen and Turan [37] used the 
multi-criteria decision-making methodology to improve the 
passenger ship structural design and achieved gains in terms 
of safety and economy. Arslan and Gürel [38] tried to find 
an optimal solution by applying fuzzy logic methodology. 
Along with these, a solution can be found using a genetic 
algorithm [27].
Özdemir [9] states that the subject of ship design 
optimization, which is frequently used by designers and 
shipyards in recent years, is perceived as a subject that 
causes different interpretations in the relevant parts of the 
sector and whose boundaries need to be defined. The use 
of optimization models in ship designs dates back to the 
1960s.
Ship design optimization problems have several conflicting 
objective functions. In the solution of multi-objective 
problems, classical methods can be used in the light of 

Figure 2. Evans spiral model [27]

Figure 3. Simultaneous design in a spiral model [26]
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assumptions and current multi-criteria approaches. For 
example, the use of the analytic hierarchy process to 
combine the efficiency function for evaluating designs.
Lee and Lee [39] emphasize that designers can only design 
based on their experience and available data. The limited 
data available at the preliminary design stage further 
highlight the designer’s freedom of knowledge. Lee and Lee 
[39], who refer to a wide variety of designs, especially in line 
with the wishes of the ship owners, mention the necessity of 
making comparisons with similar ships and using the values 
of their main characteristics at the conceptual design stage.
Tahara et al. [40] state that hull design is a multi-criteria 
decision-making problem. For example, reducing resistance, 
eliminating noise, minimal wave height, and increasing 
certain movements can be the goal of the design process. 
In addition, designers should consider values related to 
engine power or maintenance costs. Increasing some values 
may prevent others from reaching the desired values. 
Since it is generally impossible to create a perfect design in 
every respect, the main task of the designer is to provide a 
balanced integrity among the different functions expected 
from the ship [41]. Therefore, a multi-objective optimization 
approach is appropriate.
Genç and Özkök [42] focus on the sea trial stage in the ship 
production, which is the last phase of tests performed on 
ships before their delivery. Sea trial is optimized by planning 
and simulating the tests using computer programs. The 
objective is to suggest improvements that can shorten the 
duration of the sea trial, reduce costs, and expedite ship 
delivery. The results show that the new simulation model 
reduces the testing time by 2.75 hours (9.76%) compared 
to the initial model, indicating a more efficient sea trial 
process. The authors conclude that using simulation 
programs such as SImulation Modeling framework based 
on Intelligent Objects-SIMIO can help shipyards optimize 
their production processes, reduce costs, and improve on-
time delivery performance.
A comprehensive examination of the literature reveals that 
the establishment of an effective design space is crucial in 
ship design. This entails creating a framework that allows for 
efficient exploration and evaluation of design alternatives 
for different ship types and sizes. Additionally, defining 
measurable objective functions with specific attributes is 
essential for accurate assessment and comparison of design 
solutions. By incorporating quantitative metrics such as 
efficiency, cost, and risk, designers can make informed 
decisions and optimize their designs.

2.2. PSI Method
It is necessary to mathematically formulate multi-criteria 
optimization problems to describe the “Parameter Space 

Investigation-PSI” method. In this method, the system relies 
on design variables. The vector of design variables is as 
follows [12,21].
α = α1,... αr      (1)
The Capesize bulk carrier optimization model’s design 
variables are length between perpendicular (Lpp), breadth 
(B), draft (ds), block coefficient (Cb), ship speed (vtr), cargo 
volume (Vcar), and the machine database number (Imei). 
Design variable vector;
α=(Lpp, B, ds, Cb,vtr, Vcar,Imei)     (2)  
Every design variable has constraints. These constraints 
are;
  α  

j
  *  ≤  α  

j
   ≤  α  

j
  **     j = 1, … , r      (3)  

is displayed as   α  
j
  *   and   α  

j
  **   shows the lower and upper limit 

values of variable α [12,21].
When the model consists of two design variables,  α =  α  

1
  ,  

α  
2
    design variable constraints   α  

1
  *  ≤  α  

1
   ≤  α  

1
  **   and   α  

2
  *  ≤  α  

2
   ≤  

α  
2
  **   is expressed [12,21].

Functional relationships that are functions of the design 
variables exist for every design optimization problem. 
These functional constraints are shown as;
  C  

l
  *  ≤  f  

l
   (α)  ≤  C  

l
  ** ,    l = 1, … t         (4)

is displayed as   f  
l
   (α)   functional relations,   C  

l
  *   and   C  

l
  **   consist 

of lower and upper boundaries of this functional relations 
[12,21].
The design model has characteristics that should be 
minimized or optimized in performance criteria. The 
criteria restrictions determine the performance criteria. 
The criteria constraints can be written as;
  Φ  

v
   (α)  ≤  Φ  

v
  ** ,   v = 1, … , k .           (5)

Here   Φ  
v
   (α)   indicates performance criteria,   Φ  

v
  **   indicates 

the worst value of   Φ  
v
   (α)   and "≤" sign is used in equation 

(5) because minimization is the most common form for 
demonstration purposes [12,21].
Performance criteria,
  Φ (α)  =  (    Φ  

1
   (α) , … ,  Φ  

k
   (α)  )            (6)

Expressed as vector. Functional constraints are sometimes 
not correctly identified. In practice, feasible solutions 
may remain beyond constraints. To include these feasible 
solutions in the feasible solution set, the constraints need 
to be rearranged.   Φ  

k+1
   (α)  =  f  

i
   (α)   expressed as pseudo-

criterion instead of   f  
i
   (α)  ≤  C  

l
  **  l = 1, … , t  . To find constraint   

Φ  
k+1

   , the test table containing   Φ  
k+1

   (α)   the must be compiled 
(There are test tables containing performance criteria   Φ  

v
   

(α)  ≤  Φ  
v
  ** ,   v = 1, … , k ) [21].

Generally, all performance criteria and pseudo-
criteria are considered when it is desired to find 
the feasible solution set (D). The problem is now  
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  Φ  
v
   (α)  ≤  Φ  

v
  ** ,  v = 1, … , k, k + 1, … , k + t  solved with 

constraints. Thus, in order to define the feasible solution 
set, the problem should be considered with k+t criteria [11].
The Pareto optimal solution set (P) can be discovered by 
figuring out the optimal solution between the vectors in the 
feasible solution set (D). The Pareto optimal solution set 
in minimization problems can be defined as Φ(P) = minα∈D  
Φ(α). P ⊂ D; is expressed as the Pareto optimal solution 
set. However, the pseudo criteria are not taken into account 
while creating this Pareto optimal solution set. They are 
the criteria values in the Pareto optimal solution calculated 
using P(Π). ΦP is prototype is value, that is the current 
design or desired design that needs to be developed [21].
Uniformly distributed LP sequences or random number 
generators are used in the PSI approach to create vectors 
(points) in the design variable space. LP-Tau generates 
uniformly distributed sequences and supports up to 51 
design variables and 220 tests. These sequences are used to 
compute N test points    α   1 , … ,  α   N   in the design variable space 
[43].

3. Mathematical Model of Capesize Bulk 
Carrier
Many approaches have been developed to solve multi-
criteria optimization problems. In this study, the technique 
of “Parameter Space Investigation-PSI” developed in 
the former Soviet Union was used. PSI method studies  
conducted by Statnikov et al.’s [10-12,43] and Anıl [21] are 
taken as the main reference of this study. As a starting point, 
this study used the structure of Cudina [22,23] and Zanic and 
Cudina’s [24] optimization model. When solving optimization 
problems, the MOVI software uses a mathematical model that 
expresses the properties of the problem under consideration.
This research focuses on the optimization problem of bulk 
carrier design employing PSI technique to address the 
challenges posed by multiple and contradictory criteria. A 
prototype was developed based on existing ship designs found 
in the literature, and this prototype was further enhanced and 
refined. The design optimization model was examined using 
the PSI technique with MOVI software. Subsequently, the 
obtained results were compared with the findings from Zanic 
and Cudina’s [24] study as reported in the literature.
This study focuses on the optimization of ship design 
parameters. Design parameters identified in the literature were 
employed in the study. Note that the limitation of this study lies 
in the predefined set of ship design parameters. However, these 
parameters can be expanded or reduced based on specific needs 
and requirements. Furthermore, future research can involve 
the development of a prototype model to further explore and 
enhance the optimization of ship design parameters.

The problem has seven design variables, five functional 
relations, three criteria, and four pseudo-criteria. Functional 
constraints are sometimes not correctly identified. In practice, 
feasible solutions may remain beyond constraints. In order for 
these feasible solutions to be included in the feasible solution 
set, the constraints need to be rearranged. Instead of    f  

i
   (α)  ≤  

C  
l
  **  l = 1, … , t   the pseudo-criteria   Φ  

k+1
   (α)  =  f  

i
   (α)    is used.

Before solving an optimization problem, the properties 
of the objective function, constraints, and the state of the 
decision variables are important [44]. This mathematical 
model is valid only for the “Capesize” case. For other ship 
types, calculation factors, engine database, power, and cost 
parameters need to be rearranged in Appendix [24,45]. 
Also, the minimum freeboard calculation is calculated 
for the “Capesize (bulk carrier)” type [24]. It needs to be 
rearranged for other ship types.
Terms used in the mathematical model and their definitions:
Length Between Perpendiculars (Lpp): The horizontal 
distance between the front and rear perpendiculars is 
called the length between perpendiculars. It is fixed for a 
particular ship and does not depend on the ship’s loading 
condition [46].
Breadth (B): The breadth of the ship at its widest point is 
called the beam [46].
Draft (ds): The vertical distance at any point along the 
length between the waterline and the deepest part of the 
ship is the draft [46].
The block coefficient (CB): CB is the ratio of the displacement 
volume to the volume of a rectangular block whose sides 
are equal to the tip width, the average draft, and the length 
between perpendiculars [47].
Depth (D): The vertical length between the lowest point and 
the highest point of the ship [48].
Deadweight Tonnage (DWT): This weight measure shows 
the total weight a ship can carry [48].
Gross Tonnage (GT): It is a measure of the volume of all the 
spaces of the ship contained within the hull, bulkheads, and 
decks [48].
vtr: Trial speed is the speed measured at the ship’s sea trial [49].
Vservice: It is the speed at which the ship performs while 
navigating its route determined in real weather conditions 
[49].
Cargo Volume (Vcar): The cargo of a ship is the goods that it 
is carrying [50].
MCR: Maximum Continuous Service Rating is the 
maximum power output engine can produce while running 
continuously at safe limits and conditions [51].
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SMCR: Specified Maximum Continuous Rating [52].
Freeboard: Freeboard is the distance from the waterline to 
the freeboard deck of a fully loaded ship [53].
Wst: Wst includes the weight of all elements of the ship’s 
steel structure (tonnage) [54].
There are also some dimensionless ratios that are commonly 
used to describe ship geometry and in systematic analysis 
studies. These can be expressed as design parameters in 
modeling The main dimensions of the dimensionless ratios 
can be listed as follows [7]:
Length Between Perpendiculars - Beam Ratio: Lpp/B
Length Between Perpendiculars - Draft Ratio: Lpp/ds 
Length Between Perpendiculars - Depth Ratio: Lpp/D
Breadth - Draft Ratio: B/ds
These ratios should be as low as possible and should not 
be correlated with each other in a way that defines the ship 
form in the model.

3.1. Design Variables and Constraints
There are seven design variables in this problem, and four 
of them are defined as main dimension design variables. 
The design variables that were developed from the model of 
Cudina [22] were listed as follows [45]:
Main Dimensions:
p1: Lpp Length between perpendiculars (m) 
p2: B Breadth (m)
p3: ds      Scantling draught (m)
p4: CB  Block coefficient (-)
Other Design Variables:
p5: Vcar  Volume of cargo space (m3)
p6: vtr Required trial speed (kn)
p7: IME  MAN B&W 6S70MC-C, mark 7, IME (Main engine 
identifier) = 1 (MCRi = 18660; (kW at 91 rpm) maximum 
continuous rating)
MAN B&W 5S70MC-C, mark 7, IME (Main engine identifier) 
= 2 (MCRi = 15550; (kW at 91 rpm) maximum continuous 
rating)
The design variable vector is shown as α = (Lpp, B, ds, CB, vtr, 
Vcar, IME ) and design variable constraints are also shown 
as α*

j ≤α ≤ α**
j j = 1,…, r. Constraints of design variables are 

defined in the range of minimum and maximum values.
265 ≤ p1 ≤ 280
43 ≤ p2 ≤ 45
17.5 ≤ p3 ≤ 17.95
0.85 ≤ p4 ≤ 0.875

185000 ≤ p5 ≤ 195000
14.5 ≤ p6 ≤ 15.5 
p7 = 1 or 2

3.2. Functional Relations and Functional Constraints
The functional relations used in the model are expressed 
as follows. There are five functional relations in this model. 
These functional relationships and constraints were 
developed from Cudina’s [22] model [45].
f1: Lpp/B Length/Breadth ratio 
f2: Lpp/ds Length/Scantling draught ratio
f3: B/ds  Breadth/Scantling draught ratio
f4: Lpp/D Length/Depth ratio
f5: (D-ds)-FB60 Freeboard control 
The freeboard (D-ds) should be at least “about minimum 
freeboard” (FB60).
The functional relationship constraints used in the model 
are shown as follows:
5.8 ≤ f1 ≤ 6.5 Lpp/B       
15.3 ≤ f2 ≤ 16.2 Lpp/ds      
2.3 ≤ f3 ≤ 2.7 B/ds        
11.0 ≤ f4 ≤ 11.9 Lpp/D       
0 ≤ f5 (D-ds)-FB60

3.3. Pseudo-Criteria and Pseudo-Criteria Constraints
At the beginning of the research, functional relationships 
that lack strict functional restrictions can be referred to as 
pseudo-criteria.
Pseudo-criteria used in the model are “engine power 
control, the volume of cargo space and the required trial 
speed”. Pseudo-criteria used in the model and their features 
are as follows [22,45]:
f6: MCRi  - SMCR MINIMIZE the “Engine Power Control”
f7: DWT MAXIMIZE the deadweight (t) 
f8: Vcar  MAXIMIZE the volume of cargo space (m3) 
f9: vtr  MAXIMIZE the required trial speed (kn)  
Machine Power Control: The power of the selected machine 
should be more than the power requirement. In other words, 
the difference between the power of the selected machine 
and the power requirement must be greater than zero (0 < 
f6). On the other hand, f6 should also be minimized as the 
machine may be a lower powered machine supplying the 
power requirement in the database. Therefore, f6 will be 
included in the pseudo-criteria section, and the condition 
of being greater than zero will be evaluated as a “pseudo-
criteria constraint”, not a “functional constraint”. The design 
variables Cargo Volume (p5) and Ship Speed (p6) are also 
pseudo-criteria.
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3.4. Criteria and Criteria Constraints (Performance 
Criteria Constraints) 
The “design” criteria, also called the “Objective Function”, 
used in the model were “the weight of steel structure”, 
“the power requirement”, “the cost of newbuilding”. These 
criteria are adapted from Cudina’s [22] model. The criteria 
included in the model have the feature of minimization. 
There are no criterion constraints in the model [45].
c1: Wst  MINIMIZE the weight of steel structure (t)
c2: SMCR MINIMIZE the power requirement (kW)
c3: CNB MINIMIZE the cost of new building the (US 
DOLLAR)

3.5. Prototype
The prototype model was determined based on the 
characteristics of the ships produced in IHHI, Koyo 
Dock, Namura, NKK shipyards located in the Far East 
and the characteristics of the capesize bulk carriers. The 
specifications of the ships are shown in Table 3.
Based on the characteristics of the ships indicated in Table 
3, a prototype model was created. The prototype values 
used in the model are as follows [45]:
p1: Lpp (m)= 279
p2: B (m)= 43

p3: ds (m)= 17.5
p4: CB (-)= 0.875
p5: Vcar (m3)= 185000
p6: vtr (knots)= 15.27
p7: Ime i (-)= 1

4. Multi-Criteria Optimization of Capesize Bulk 
Carrier
Optimization is a discipline that helps to make managerial 
decisions by developing mathematical models for solving a 
problem [44]. In single-criteria optimization, it is tried to 
obtain a single design or decision that is best for a purpose, 
which is usually a global minimum or global maximum 
based on the minimization or maximization problem [66]. 
Almost all designs or challenges in the real world necessitate 
simultaneous optimization of several conflicting objectives. 
In the case of several objectives, there may not be a single 
optimal all-purpose solution. In this situation, selecting 
a solution from a limited number of consensus options is 
required of the decision-maker. The optimal solution ought 
to have performance adequate for all needs.
The Pareto optimum has been integrated into the 
development of multi-objective optimization algorithms. 
In this way, depending on its objective values, a feasible 

Table 3. Characteristics of ships produced in shipyards and their types

LPP (m) B (m) ds (m) D 
(m)

The 
capacity of 
cargo (m3)

DWT (t) GT (t) Vkn, service Main 
engine

SMCR (kw/
rev)

Shipyards

IHHI 277 45 17.6 23.8 186,668 48,338 83,849 14.8 6RTA72 8160/124

Koyo Dock 280 45 17.6 23.8 188,205 45,908 85,379 14.6 6S70MC 9267/110

Namura 277 45 17.7 24.1 191,255 44,881 85,868 14.8 6S70MC 8240/122

NKK 279 45 17.81 24.1 191,582 47,400 87,522 14.7 6S70MC 8310/123

Capesize 
Bulk 

Carriers

Cape 
Riviera 280 47 17.95 24.4 205,722 185,875 93,006 14.7

Kawasaki 
MAN B&W 

6S70MC Mk 
VI diesel 

16860 kW x 
91 rpm

Cape 
Heron 279 45 17.95 24.4 197,049 177,656 88,494 15

Mitsui 
MAN B&W 

6S70MC 
diesel

16860 kW x 
91 rpm

Royal 
Chorale 279 45 17.95 24.4 197,050 177,544 88,491 15

Mitsui 
MAN B&W 

6S70MC 
diesel

16860 kW x 
91 rpm

Ocean 
Comet 279 45 17.93 24.4 198,964 176,943 89,603 14.6

MAN B&W 
6S70MC Mk 

VI diesel

16860 kW x 
91 rpm

Frontier 
Neige 288 45 18.2 24.7 203,226 182,737 93,288 15.3

Kawasaki 
MAN B&W 
6S70MC-C7 

diesel

17780 kW x 
87 rpm

Source: [24,55-65]
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solution may be the best, the worst, or indistinguishable 
from the other options. The phrase “optimal solution” refers 
to a solution that is not just better than the alternatives 
for at least one objective while not being worse for any of 
the goals. A solution that is not suppressed by any other 
solutions in the search space is the optimal solution. 
According to Osyczka [66], Dias and Vasconcelos [67], Sağ 
[68], and Deb [69], the collection of such optimum solutions 
is known as a pareto optimal solution set. 
When solving optimization problems, MOVI software uses 
a mathematical model that expresses the properties of the 
problem under consideration. The mathematical model 
explains the relationships between output functions and 
input parameters (design variables) [21,45]. Model using 
MOVI software:
⦁ Retrieves input parameters (design variables) created by 
MOVI.
⦁ Calculates output functions based on input parameters.
In general, the model may contain data files, programs, etc.. 
No matter how complex the model structure is, the model 
interface provides the interaction between MOVI and the 
model, as shown in Figure 4. Dynamic Link Library (DLL 
file), Matlab M-function (M-file), and executable EXE file are 
supported for the model interface file. Matlab M-file was 
used in this study.
Matlab M-function (M-file): Output model functions are 
calculated with an M-function in a Matlab environment. 
Input parameters are passed to the M-function as input 
arguments. Output functions are expressed by the output 
vector of the M-function [21,45].
Once the M-file interface is generated, MOVI can begin 
optimization. In this study MOVI 1.4 and MATLAB R2009a 
software were used.
MOVI uses histograms to show the distribution of feasible 
and pareto optimal solutions. The intervals of the histograms 
are divided into 10 subintervals. Analysing the histograms 
elicits how feasible and pareto sets are distributed in 
the design variable set. Histograms play a major role in 
correcting constraints of design variables.

4.1. The First Run Optimization
The optimization model was defined in MOVI via the 
corresponding menus. LP Tau was chosen as the number 

generator for this optimization model. LP-Tau generated 
uniformly distributed arrays and supported 51 design 
variables and 220 tests. After the prototype values were 
entered, 8192 (213) tests were performed using the Run 
Test interface. This meant that 8192 design variable vectors 
could be generated by MOVI. As a result of these tests, 3069 
of the vectors could enter the test table, while 5123 could not 
meet the constraints. Prototype values were expressed with 
the vector ”0”. To find better values than the prototype, the 
prototype value was taken as the constraint and 7 vectors 
were included in the feasible solution set. Only two of these 
seven feasible solutions (#7371, #5145) were Pareto optimal 
solutions. The vectors containing Pareto optimal solution 
were the 7371 and 5145 vectors. Table 4 shows the feasible 
and pareto optimal solutions for the first optimization.
By means of  histograms, the analysis of the design variables 
in the feasible solution could be made. Histograms show 
the distribution of variables over certain intervals. Thus, 
to achieve a more uniform distribution, the lower and 
upper limits of variables could be determined again. In the 
histograms, the values of the pareto optimal solutions are 
shown as green circles, and the ranges in which the feasible 
solutions were collected are shown in the red circle. The 
prototype value is shown as symbol in the optimization 
process. The feasible solution intervals of the design 
variables are shown in Figure 5.
According to the histograms of the design variables shown 
in Figure 5; the lower limit for the design variable p1 (length 
between perpendicular) needed to be adjusted. The lower 
bound should also be adjusted for the design variable p3 
(draft). Both the upper and lower limits must be set for the 
design variable p6 (ship speed).

4.2. The Second Run Optimization
The boundaries of the design variables were rearranged. 
Lower limit for p1 was redefined as 273; lower limit for p3 

Figure 4. Data exchange between MOVI 1.4 and the user model [21]

Table 4. Feasible and pareto optimal solutions for the first run 
optimization

1st Run 2nd Run 3rd Run

Test Performed 8192 8192 8192

Test Table 
Contains 3069 4112 5162

Feasible Set 
Contains 7 102 282

The Number of 
Pareto Optimal 

Solutions
2 9 6

Numbers of 
Pareto Optimal 

Solutions Vectors:

#7371, 
#5145

#2794, #3220, 
#6096, #741,   

#3240, #3561, 
#903, #4307, 

#1935

#3240, #1944, 
#57, #4307, 
#1935, #207
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Figure 5. Feasible solution intervals of design variables for the first optimization
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was redefined as 17.74; lower limit for p6 was 15.26; and 
the upper limit was redefined as 15.4. For the second run of 
optimization, 8192 tests were performed using rearranged 
limits. As a result of this test, 4112 vectors could enter the 
test table. The 4080 vectors did not satisfy the constraints. 
Again, in order to find better values than the prototype, the 
prototype value was used as the constraint and 102 vectors 
were included in the feasible solution set. Only 9 of them 
were pareto optimal solutions in 102 feasible solutions. 
Table 4 shows the feasible and pareto optimal solutions for 
the second run optimization.
The lower and upper limit values of the variables should be 
determined again through histograms. Figure 6 indicates 
the boundaries that need to be rearranged. The upper 
bound for the design variable p4 (block coefficient) and p5 

(cargo volume) needed to be rearranged. 
After the second run optimization, pareto optimal values of 
design variables are listed in Table 5.

4.3. The Third Run Optimization
The boundaries of the design variables were rearranged. 
The upper bound for the design variable p4 was changed 
to 0.864 and the upper bound for the design variable p5 to 
191,000. As a result of these tests, 5162 of 8192 tests could 
enter the test table, while 3030 could not. Prototype values 
were taken as constraints and 282 vectors were included in 
the feasible solution set. In the end of 8192 tests, 282 feasible 
solutions were found with better results than the prototype 
values, and 6 of them were pareto optimal solutions. Table 
4 shows the feasible and pareto optimal solutions for the 
third run optimization.
By means of  histograms, the lower and upper limit values 
of the variables are shown in Figure 7. When the histograms 

in Figure 7 are examined, there are no intervals in which the 
constraints of the continuous variables are defined, where 
there is no feasible  solution. For this reason, the fourth 
round was not passed and the variable constraints were not 
rearranged.
As a result of of the first run optimization, vectors #7371 
and #5145 contain the pareto optimal result. In the end of 
the second run of optimization, the pareto optimal vectors 
are #2794, #3220, #6096, #3741, #3240, #3561, #903, 
#4307, #1935. After the third run optimization, pareto 
optimal values of design variables are listed in Table 5. “0” 
number of vector has prototype values and “#57”, “#207”, 
“#1935”, “#1944”, “#3240”, “#4307” number of vectors has 
pareto optimal values of design variables.
The prototype values and the values of Zanic and Cudina 
[24] found as a result of optimization and the pareto 
optimal values found as a result of the optimization process  
are shown in Table 5 for design variables, Table 6 for pseudo 
criteria, and Table 7 for criteria.
After the completion of the optimization process, pseudo-
criteria values were calculated as Table 6.
When the pseudo-criteria in Table 6 are examined, it is seen 
that the values of the minimum feature f6 (Engine Power 
Control) criterion are lesser than the prototype value. 
Considering the f7 (deadweight) and f8 (cargo volume) 
criteria which have maximum properties, it is seen that the 
values in the pareto optimal solution set values are higher 
than the prototype value.
When the f9 (required trial speed criterion), which is also 
in the maximum structure, is examined, it is seen that the 
values in the pareto optimal solution sets values are higher 
than both the prototype value and the value obtained by 
Zanic and Cudina [24] (15.03), which is used as a reference.

Figure 6. The feasible solution intervals of design variable 4 and 5 for the second run optimization
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The Pareto optimal values of the criteria obtained as a result 
of the first, second, and third optimization runs are listed in 
Table 7.

The prototype value for the minimized c1 = Wst ton (Steel 
Structure Weight) criterion is 18,911 tons, and the value 
that Zanic and Cudina [24] obtained as a result of the 
optimization is 19,001 tons. As a result of third run of 
optimization with MOVI, six solutions entered the Pareto 
optimal solution set. Looking at the c1 value of these six 
solutions, these values vary between 18,611 and 18,897. All 
six solutions are better than Zanic and Cudina’s [24] result 
for c1 (steel structure weight). Also, the values of vectors 
57, 1935, 1944, 3240 and 4307 are better than the value of 
c1 calculated using prototype values.

The prototype value for the minimized c2 = SMCR kW 
(Power Requirement) criterion is 15,670 kW, and the 
value that Zanic and Cudina [24] obtained as a result of the 
optimization is 15,268 kW. Considering the c2 value of the 
six pareto optimal solutions, these values vary between 

14,744 and 15,431. Five of these six solutions are better 
than Zanic and Cudina’s [24] result for the c2 - power 
requirement) (values of vectors 57, 207, 1935, 3240 and 
4307). The c2 criterion value of all six solutions is better 
than the c2 value calculated using the prototype values.
For the minimized c3 = CNB US$ (New Shipbuilding Cost) 
criterion, the prototype value is 93,696,607 US$, result of 
Zanic and Cudina [24] optimization is 93.037.000 US$. 
As a result of the third run of optimization with MOVI, six 
solutions entered the pareto optimal solution set. Looking 
at the c3 value of these six solutions, these values are 
between 91.9 million and 92.19 million US$. All six solutions 
are better for c3 (new shipbuilding cost) than Zanic and 
Cudina’s [24] value and prototype.
To find these criteria values, the design variables values in 
Table 5 should be taken as input parameters. The criteria 
values found in the end of the analysis were better than the 
prototype values and the values of Zanic and Cudina [24].

Table 5. Pareto optimal values of the design variables obtained as a result of the first, second, third optimization runs and reference study
Design Variables p1 Lpp p2 B p3 ds p4 CB  p5 Vcar p6 vtr p7 IME

Prototype Values # 0 279 43 17.5 0.875 185,000 15.27 1

 1
st

 R
un

Lower Bounds 273.915 43.483 17.783 0.851 185,47 15.291 2

Upper Bounds 277.376 44.626 17.834 0.856 186,95 15.334 2

Pareto Optimal # 7371 277.376 43.483 17.783 0.856 185,47 15.334 2

Pareto Optimal # 5145 273.915 44.626 17.834 0.851 186,95 15.291 2

2nd
 R

un

Lower Bounds 273.326 43.124 17.763 0.850 185,002 15.274 2

Upper Bounds 279.614 44.417 17.928 0.855 186,350 15.386 2

Pareto Optimal # 2794 275.387 44.197 17.851 0.851 185,164 15.328 2

Pareto Optimal # 3220 274.126 44.057 17.817 0.854 185,256 15.350 2

Pareto Optimal # 6096 273.326 44.417 17.763 0.851 185,768 15.296 2

Pareto Optimal # 3741 278.071 43.434 17.919 0.850 185,442 15.386 2

Pareto Optimal # 3240 273.579 44.151 17.860 0.851 186,350 15.287 2

Pareto Optimal # 3561 277.148 43.451 17.842 0.855 185,002 15.280 2

Pareto Optimal # 903 279.173 43.744 17.782 0.852 185,322 15.300 2

Pareto Optimal # 4307 278.552 43.168 17.925 0.855 185,919 15.274 2

Pareto Optimal # 1935 279.614 43.124 17.928 0.853 185,981 15.287 2

3rd
 R

un

Lower Bounds 273.579 43.124 17.813 0.850 185,026 15.274 2

Upper Bounds 279.645 44.151 17.928 0.857 185,914 15.288 2

Pareto Optimal # 3240 273.579 44.151 17.860 0.850 185,810 15.287 2

Pareto Optimal # 1944 273.708 43.812 17.882 0.857 185,026 15.274 2

Pareto Optimal # 57 277.266 43.406 17.881 0.854 185,094 15.289 2

Pareto Optimal # 4307 278.551 43.168 15.925 0.853 185,552 15.274 2

Pareto Optimal # 1935 279.614 43.124 17.928 0.852 185,589 15.287 2

Pareto Optimal # 207 279.645 43.540 17.813 0.850 185,914 15.275 2

Reference [24] 274 44.4 17.85 0.865 189,670 15.03 2
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Figure 7. Feasible solution intervals of design variables for the third run optimization
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5. Conclusion
Decision making has always been exceptionally critical, 
particularly for the leading of different purposes. Deciding on 
ships and comparative plans with a life span of approximately 
30-40 years, in terms of making them more economical, 
competitive and environmentally friendly, maintains and will 
preserve its significance as a subject that should be examined 
very well compared to numerous decisions.

The model used in this study will form the basis for ship 
designs using multi-criteria optimization methods.
The designs produced using the design spiral method have 
been transformed by the use of optimization methods. 
Finding the feasible solution and the Pareto optimal 
solution set in multi-criteria optimization problems is of 
great importance, especially when the prototype is being 
developed.

Table 6. Pareto optimal values of the pseudo-criteria obtained as a result of the third optimization run
Pseudo Criteria f6: MCRi  - SMCR (Min) f7: DWT (Max) (t) f8: Vcar (Max) (m3) f9: vtr (Max) (kn)

Prototype Values # 0 2,989.309 166,933.132 185,000.000 15.27000

3rd
 Ru

n

Pareto Optimal # 57 497.926 167,178.378 185,093.750 15.28843

Pareto Optimal # 207 806.262 167,696.279 185,914.062 15.27476

Pareto Optimal # 1935 728.881 167,528.841 185,588.867 15.28700

Pareto Optimal # 1944 119.429 167,370.242 185,026.367 15.27387

Pareto Optimal # 3240 437.172 166,960.617 185,810.058 15.28689

Pareto Optimal # 4307 687.037 167,233.339 185,551.513 15.27382

Table 7. Pareto optimal values of the criteria obtained because of the first, second, third optimization runs and reference study
Criteria c1 = Wst (Min) c2 = SMCR (Min) c3  =  CNB  US $ (Min)

1st
 R

un

Prototype Values # 0 18,911 15,670 93,696,607

Lower Bounds 18,778 15,322 92,162,223

Upper Bounds 18,806 15,336 92,218,814

Pareto Optimal # 5145 18,806 15,322 92,162,223

Pareto Optimal # 7371 18,778 15,336 92,218,814

2nd
 R

un

Lower Bounds 18,665 14,911 91,960,962

Upper Bounds 18,898 15,540 92,218,230

Pareto Optimal # 903 18,898 15,029 92,168,457

Pareto Optimal # 1935 18,848 14,911 92,218,230

Pareto Optimal # 2794 18,742 15,318 91,960,962

Pareto Optimal # 3220 18,665 15,540 91,968,406

Pareto Optimal # 3240 18,669 15,137 92,013,004

Pareto Optimal # 3561 18,730 15,090 92,028,224

Pareto Optimal # 3741 18,765 15,180 92,000,807

Pareto Optimal # 4307 18,804 15,005 92,205,640

Pareto Optimal # 6096 18,679 15,234 91,969,018

3rd
 Ru

n

Lower Bounds 18,611 14,744 91,917,124

Upper Bounds 18,897 15,431 92,191,529

Pareto Optimal # 57 18,724 15,052 92,005,445

Pareto Optimal # 207 18,897 14,744 92,191,529

Pareto Optimal # 1935 18,819 14,821 92,115,028

Pareto Optimal # 1944 18,611 15,431 91,956,770

Pareto Optimal # 3240 18,643 15,113 91,917,124

Pareto Optimal # 4307 18,770 14,863 92,082,947

Reference [24] 19,001 15,268 93,037,000
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In this study, the prototype development problem of a 
Capesize-type bulk carrier was addressed by the PSI 
method using visualization techniques such as histograms 
and analysis methods.
The model was developed in MATLAB environment and 
solved again in MOVI. By finding the feasible solution set 
and pareto optimal solution set with MOVI, better results 
were obtained than the results of Zanic and Cudina [24] and 
the prototype.
At the end of this study, the prototype design of Capesize 
bulk carrier was developed. After analyzing the Pareto 
optimal results, the user can choose the model that suits 
him/her or continue the optimization process. This study 
presents a case study on the development of ship design 
problems.
For future studies, the design process can be improved by 
expanding databases of mathematical models specific to 
various ship types and sizes. The PSI method presented in this 
paper introduces a program that generates histograms and 
test tables, providing decision-makers with unprecedented 
opportunities for analyzing and synthesizing alternative 
designs.
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APPENDIX
A. Constants and Parameters 
The following factors for computations, engine database, 
power parameters, cost parameters and constants are valid 
only for the Capesize (bulk carrier) model.

A.1. Factors for Computations [22,23,24,45] 
ffc1 = 5 Impact of high-strength steel on reducing the 
weight of steel structures.
ffc2 = 0.0282 Empirical factor 
ffc3 = 450 Addition of the mass of the steel structure 
ffc4 = 800 Empirical factor 
ffc5 = 0.9 CSR/SMCR ratio
ffc6 = 0.28 Empirical factor 
ffc7 = 100 Addition of the weight of ship equipment 
Af  = 29 Compensation factors Af and Bf for calculation of 
cGT
Bf  = 0.61 
κ = 0.64 specific voluminosity of the ship
kappa = Vcar / (Lpp*B*D)

A.2. Engine Database [22,23,24,45]
MAN B&W 6S70MC-C, mark 7 MCR: 18660 
CME: 8400000 $ KCSR: 1.022
MAN B&W 5S70MC-C, mark 7 MCR:15550 
CME: 7400000 $ KCSR: 1.022

A.3. Power Parameters [22,23,24,45]
a1 = 0.00571
a2 = -0.1465
a3 = 1.072
a4 = 0.8145
a5 = 3.843
a6 = 3.589
a7 = 0.0006634

A.4. Cost Parameters [22,23,24,45]
cst = 1000 Average unit steel costs ($/tonne)
rWgst (Wgst/Wst) = 1.12 The ratio of the gross mass of steel 
to the weight of the steel structure 
Cfix ($) = 26000000 Other costs, including costs 
related to other materials and equipment 
PcGT = 35 Shipyard productivity (hrs/cGT) cGT: the gross 
tonnage accounted for, according to the OECD.
VL = 30 Unit hourly wage ($/hour of employment)
Coc = 7000000
Vcam = 5000 The volume of the camber (m3)
Vsup = 11000 Volume of the accommodation (m3)
Vfc = 0  The volume of the forecastle (m3)
KCBD (CBD) = 0.005285 Constant for approximating the 
block coefficient to the molded depth. 

A.5. Constants
γtot = 1.0279: Density of sea water, including influence of 
shell plating and ship appendages (t/m3) [22,23,24,45].


