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Abstract. We study the hull, that is the intersection of a code with its or-

thogonal, of both linear and additive codes over the rings with unity of order
4, where the orthogonal is the Euclidean orthogonal for linear codes and for

additive codes it is determined using characters. We relate the hull of the code

with the hull of its image under the corresponding Gray map and use this to
count the number of codes with a given hull for additive codes for the rings

with characteristic 2. We investigate the codes over these rings which have a

hull of given type which gives the cardinality of the hull.

1. Introduction. The hull of a linear code is defined to be the intersection of a
linear code and its dual with respect to the Euclidean inner-product. This notion
was first introduced in [1], by Assmus and Key, and was used to study the codes of
finite projective and affine planes. Immediately after this, the hull of a code was also
used to study the codes of finite nets in [3] and [4]. In all of these cases, the fact that
the hull was a self-orthogonal code was used heavily. Additionally, the hull of a code
plays an important role in determining the complexity of algorithms for studying
the permutation equivalence of two linear codes and the automorphism group of
a linear code. For a complete description of these results, see [20, 21, 27, 26]. It
has been shown that these algorithms are very effective if the size of the hull is
small. Therefore, finding codes with small hulls has become a widely studied topic
of interest in coding theory. In particular, linear complementary dual (LCD) codes,
which are codes with a trivial hull have been an area of intense study. See [10]
for a description of these codes. Hulls of linear codes, cyclic codes, and dihedral
codes over finite fields have been extensively studied in [13], [12], [14], [28], and
[30]. Recently, hulls of cyclic codes over the rings Z4 and F2[v]/〈v2 + v〉 have been
studied in [19] and [18], respectively.

In this paper, we shall study codes over the four finite rings of order 4, namely
the rings F4,Z4,F2[u]/〈u2〉, and F2[v]/〈v2 + v〉. These rings were the first rings to
be studied when codes began to be studied over rings. There are several reasons
why codes over these rings are important. One of the major reasons, is that there
exists interesting Gray maps from these four rings to the binary space. Moreover,
these rings represent various different families or rings, namely fields, chain rings,
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and non-chain principal ideal rings. As such, there are generalizations from this
family of rings to various other families of rings. In this way, these four rings are
representative of codes over rings (at least commutative rings) in general. Addi-
tionally, these four rings are all Frobenius, which means they all satisfy the double
annihilator condition and that the MacWilliams relations hold for codes over these
rings. For a complete description of the importance of codes over Frobenius rings
see [5] and [31]. We note that in this paper, we assume that all rings have a multi-
plicative unity and are commutative. There is a wide literature now for codes over
finite commutative rings, but there is now interest in codes over rngs (rings without
a multiplicative identity, which gives the spelling, that is “ring” without the “i”)
and codes over non-commutative rings. However, these cases are quite different
than the case we have here so we restrict ourselves to commutative finite rings.

In [25], the number of distinct linear codes over finite fields which have a hull of
given dimension were given. It was proven that the expected dimension of the hull
of a linear code is a constant when the parameters n and k go to infinity.

In [15], the numbers of distinct linear codes of arbitrary type over a finite chain
ring and a finite principal ideal ring were determined. The authors defined a gen-
eralized form of the Gaussian binomial coefficients and gave recursion formulas.
These formulas will be used extensively here.

In this paper, we define the type of the hull of linear and additive codes over
the rings of order 4. We give the number of codes over these rings which have a
hull of given type. The main goal in this is to aid in the classification of a certain
type of code. For example, LCD codes and self-dual codes are highly sought after
codes and the counting formulas are a key step in determining when an exhaustive
search for such codes is complete. We describe the hull of linear codes over rings
and highlight some nuances of the types of these codes. We show that for three of
the rings the hull of the image of a code is the image of the hull of a code. For the
ring Z4, we give a special case where the result is true. For F4, we determine the
number of additive codes with a hull of a given size in Theorem 4.10 and examine
the asymptotics when compared to linear codes over F4 with a give hull size. For
F2[v]/〈v2 + v〉, we first correct some errors in the literature related to the type of
a code and we determine the number of additive codes with a hull of a given size.
We determine the number of linear codes over this ring and relate this number to
the number of binary codes with a given dimension. In Theorem 4.25, we give the
number of linear codes over the ring with a hull of a given size. For F2[u]/〈u2〉, we
count the number of additive codes over the ring. Finally, we count the number of
free linear codes over F2[u]/〈u2〉 and Z4 with a hull of a given size.

2. Definitions and notations.

2.1. Codes over rings. We begin by giving the necessary definitions for rings of
order 4 and for codes over these rings.

A code over a ring R of length n, is a subset of Rn. If that subset is also a
submodule then we say that the code is linear. If the code is closed under addition
but not necessarily closed under scalar multiplication then we say that the code is
additive. Of course, all linear codes are additive but not all additive codes are linear.
Additive codes over rings of order 4 have been a widely studied object because of
their relationship to quantum coding. There is also a natural connection to DNA
computing. If a matrix is given as the generator matrix for a linear code then the
code is formed by taking all linear combinations of the rows of the matrix. However,
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if a matrix is given as the generator matrix for an additive code then the code is
formed by taking all possible sums of the rows of the matrix.

We attach to the ambient space the standard Euclidean inner-product, namely

[v,w] =
∑

viwi. (1)

The orthogonal with respect to this inner product is defined as C⊥ = {x ∈ Rn|[x, y] =
0 for all y ∈ C}. It follows from the foundational results in [31] that if R is a finite
commutative Frobenius ring then |C||C⊥| = |R|n, see also [5] for a proof of this
result. Of course, the 4 rings we consider in this work are all finite commutative
Frobenius rings. A code is said to be self-orthogonal if C ⊆ C⊥ and self-dual if
C = C⊥. We define the hull of a code C as follows. Let C be a linear code, then

Hull(C) = C ∩ C⊥. (2)

Since the hull is the intersection of two linear codes, it follows immediately that
Hull(C) is a linear code. Moreover, we note that Hull(C) = Hull(C⊥) since
(C⊥)⊥ = C. If Hull(C) = {0}, then the code C is said to be a linear code with
a complementary dual (LCD), see [10] for a description of these codes and their
importance. For a self-orthogonal code C, we have C = Hull(C). With this in
mind, a self-dual code has the largest possible hull, namely, |Hull(C)|2 = |R|n.
In other words, the size of the hull is bounded below by 1 and above by

√
|R|n.

Namely, when it is 1 it is an LCD code and when it is
√
|R|n it is self-dual.

This Euclidean inner-product given in Equation (1) and its corresponding
MacWilliams relations are for linear codes. For additive codes we use the group
structure to get a corresponding inner-product.

A character of a group G is a homomorphism from the group G to the multiplica-
tive group of the Complex numbers, C∗. The set of all characters of G, denoted by

Ĝ = {π | π is a character of G}, is a group that is isomorphic to G, but not in a
canonical manner. It is this group isomorphism that we use to construct a duality.

An isomorphism between G and its character group Ĝ gives a character table as

follows. Let g1, g2, . . . , gs denote the elements of the group and we let φ : G → Ĝ
be the isomorphism. Denote by χgi the image of gi under φ, that is χgi = φ(gi).
Index the rows by φ(gi) and the columns by the elements of the groups where the
element of the table corresponding to (χgi , gj) is χgi(gj).

Fix a duality M of G, that is, an isomorphism of G and Ĝ. Let C be a code over
G, then the orthogonal of C with respect to this duality is defined as

CM = {(g1, g2, . . . , gn)|
n∏
i=1

χgi(ci) = 1 for all (c1, . . . , cn) ∈ C}. (3)

It is known, see [5], that the MacWilliams relations apply for additive codes with
this duality. Therefore, we have as consequences the fact that |C||CM | = |G|n just
as we have for linear codes and their duality. In terms of the hull, we can define
the hull with respect to this duality as HullM (C) = C ∩ CM . It is important to
note that if M1 and M2 are two different dualities then it is certainly possible (and
probable) that HullM1(C) 6= HullM2(C⊥).

We recall an important counting result which we shall use extensively. Over the
finite field Fq, the number of subcodes of dimension k in a dimension n space is
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given by a well-known formula,[
n
k

]
q

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

3. Rings. In this section, we shall give basic results about the ring of order 4 and
give some foundational results about the hull. Let R be a ring of order 4. Note
that when we say ring, we are assuming that a ring has a multiplicative unity.
Then it is well known that R is one of the following four rings: F4,Z4,F2[u]/〈u2〉,
F2[v]/〈v2 + v〉. The ring F4 is the field with four elements. The ring Z4 is the ring
of integers modulo 4. We describe each of these rings in the following subsections.

3.1. The ring F4. The ring F4 is the finite field of order 4. The map α is defined
to be the projection from F4 to F2

2. That is, α(a+ bω) = (a, b). Any code over F4 is
equivalent to a code generated by a matrix of the form (Ik |A) and has dimension
k. It is immediate that the image of any linear code over F4 under the map α is a
binary linear code. However, the inverse image of a binary linear code is necessarily
additive but may not be linear. For example, the inverse image of the binary code
{(0, 0), (1, 1)} is {0, 1 + ω} which is an additive code but not linear. Of course, the
image of an additive code under α is a binary linear code.

3.2. The ring Z4. The ring Z4 is a finite chain ring with maximal ideal 〈2〉. The
map φ is a non-linear map from Z4 to F2

2. Writing an element in Z4 as a + 2b we
have φ(a + 2b) = (b, a + b). Over Z4 all additive codes are necessarily linear. The
image of a linear code under φ be or may not be linear. In fact, it is this Gray map
φ that was one of the major prompts for studying codes over rings in the first place.

The generator matrix of a code over Z4 is equivalent to a code generated by a
matrix of the following form:

G =

(
Ik0 A0,1 A0,2

0 2Ik1 2A1,2

)
, (4)

where Ai,j is a binary matrix. In this case, we say that the code has type (k0, k1)
and has |C| = 4k02k1 . The dual of the code has type (n− (k0 + k1), k1).

3.3. The ring F2[u]/〈u2〉. The ring F2[u]/〈u2〉 is a finite chain ring with maximal
ideal 〈u〉. It differs from Z4 in that it has characteristic 2 whereas Z4 has charac-
teristic 4. Codes over this ring were first studied in [7]. This ring is the first in a
family of rings denoted by Rk, therefore, this ring is often denoted as R1. For a
description of codes over Rk see [16], [9], and [17]. The map ψ is a linear map from
F2[u]/〈u2〉 to F2

2. It is defined as ψ(a+ bu) = (b, a+ b).
This map is not an isomorphism so that not every binary linear code of even

length is the image of a linear code over F2[u]/〈u2〉. For example, we note that
the action of multiplication by 1 + u interchanges two coordinates in the binary
image. Therefore, the automorphism group of a binary code must contain such an
automorphism for the code to be the image of a linear code over F2[u]/〈u2〉. We
have from Corollary 6.4 in [16] that ψ(C⊥) = ψ(C)⊥.

The generator matrix of a code over F2[u]/〈u2〉 is equivalent to a code generated
by a matrix of the following form:

G =

(
Ik0 A0,1 A0,2

0 uIk1 uA1,2

)
, (5)
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where Ai,j is a binary matrix. In this case, we say that the code has type (k0, k1)
and has |C| = 4k02k1 .

3.4. The ring F2[v]/〈v2 + v〉. The ring F2[v]/〈v2 + v〉 is isomorphic to F2 × F2

via the Chinese Remainder Theorem. The map β is the inverse of CRT and maps
F2[v]/〈v2 + v〉 linearly to F2

2. It is defined as β(a + bv) = (a, a + b). This map can
be extended to (F2[v]/〈v2 + v〉)n in a natural way. Let C = β−1(C1, C2) be a code
over R, then C is denoted by CRT (C1, C2), where C1 and C2 are binary codes and
C is uniquely determined by C1 and C2. It is shown in [2] that β(C⊥) = β(C)⊥.

It was given in [32] that a linear code over F2[v]/〈v2 + v〉 has a generator matrix
of the following form, which consists of a minimal generating set:

G =

 Ik1 A B D1 + vD2

0 vIk2 0 vC1

0 0 (1 + v)Ik3 (1 + v)E

 ,

where A,B,C1, D1, D2, E are binary matrices. This is not true. Consider the code
generated by the vector (v, 1 + v). This code is generated by a single vector but
does not have a generator matrix of the aforementioned structure. For a complete
description see [11]. Therefore, we avoid defining a type for codes over this ring.
Rather we deal with the codes and their cardinalities using the Chinese Remainder
Theorem.

We now summarize the Gray maps for these 4 rings as follows:

α ψ φ β
α(0) = 00 ψ(0) = 00 φ(0) = 00 β(0) = 00
α(1) = 10 ψ(1) = 01 φ(1) = 01 β(1) = 11
α(ω) = 01 ψ(1 + u) = 10 φ(3) = 10 β(1 + v) = 10
α(ω2) = 11 ψ(u) = 11 φ(2) = 11 β(v) = 01

3.5. The hull of linear codes over rings. We shall establish some notations for
the type of the code and the hull.

Let R be a finite Frobenius ring. Let C be a linear code over R of type
(k0, k1, . . . , ke−1). Then the hull of C, Hull(C), has type (l0, l1, . . . , le−1). We note
for F4, we have that e = 1, for Z4 and F2[u]/〈u2〉 we have that e = 2.

We note the following important point. Even though Hull(C) ⊆ C, this
does not imply that li ≤ ki. For example, consider the linear code over Z4,
C = {00, 11, 22, 33}. This code has type (1, 0). Its orthogonal is the code C⊥ =
{00, 13, 22, 31} which has type (1, 0). The hull of the code, Hull(C) = {00, 22},
which has type (0, 1). We note that l1 = 1 and k1 = 0 and 1 6< 0.

Lemma 3.1. Let C be a code over a ring R.

• If R is F2[u]/〈u2〉 then ψ(C⊥) = ψ(C)⊥.
• If R is F2[v]/〈v2 + v〉 then β(C⊥) = β(C)⊥.
• If R is F4 then α(C⊥) = α(C)⊥.

Proof. The proof for F2[u]/〈u2〉 is found in [17]. The proof for F2[v]/〈v2 + v〉 is
found in [2].

For F4, let v = (a1 + b1ω, a2 + b2ω, . . . , an + bnω) and w = (c1 + d1ω, c2 +
d2ω, . . . , cn + dnω). Then [v,w] =

∑
(ai + biω)(ci + diω). If [v,w] = 0, then∑

(aici+bidi)+(bici+aidi+bidi)ω = 0. This implies that
∑

(aici+bidi) = 0. Then
α(v) = (a1, b2, a2, b2, . . . , an, bn) and α(w) = (c1, d2, c2, d2, . . . , cn, dn). Therefore,
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[α(v), α(w)] =
∑
aici + bidi. This gives that [v,w] = 0 implies [α(v), α(w)] = 0.

Then noting that |α(C)⊥| = |α(C⊥)| and we have the result.

Theorem 3.2. Let C be a code of length n over F2[u]/〈u2〉, F2[v]/〈v2 + v〉, and F4

and let Φ be its corresponding Gray map. Then

Φ(Hull(C)) = Hull(Φ(C)).

Proof. Let v ∈ Hull(Φ(C)). Then v ∈ Φ(C) ∩ Φ(C)⊥ = Φ(C) ∩ Φ(C⊥). Let w be
such that Φ(w) = v. Then Φ(w) ∈ Φ(C) and Φ(w) ∈ Φ(C⊥). This gives w ∈ C∩C⊥
and v = Φ(w) ∈ Φ(C ∩C⊥) = Φ(Hull(C)). Therefore, Hull(Φ(C)) ⊆ Φ(Hull(C)).

Next let v ∈ Φ(Hull(C)) = Φ(C ∩ C⊥). Let w be such that Φ(w) = v. Then
w ∈ C ∩C⊥ = Hull(C). This gives that v ∈ Φ(C) and v ∈ Φ(C⊥) = Φ(C)⊥. Then
v ∈ Φ(C) ∩ Φ(C)⊥ = Hull(Φ(C)). This gives Φ(Hull(C)) ⊆ Hull(Φ(C)) and we
have the result.

For Z4 we do not have the result in the previous theorem since the Gray map
does not satisfy the condition that φ(C⊥) = φ(C)⊥. See [6] for an explanation
where it gives numerous examples of self-dual codes whose images are not self-dual
(recall that the hull of a self-dual code is the code itself). We shall give a simple
example of why it fails for Z4 in Example 1. What we do have in this case is given
in the following theorem.

Theorem 3.3. Let C be a code over Z4 of type (0, k1). Then

φ(Hull(C)) = Hull(φ(C)).

Proof. Any code over Z4 of this type is necessarily self-orthogonal. Therefore
Hull(C) = C so φ(Hull(C)) = φ(C).

It is clear that φ(C) is also self-orthogonal so Hull(φ(C)) = φ(C) and we have
the equality.

Example 1. Consider the linear code over Z4, C = {(0, 0), (1, 1), (2, 2), (3, 3)}.
Its orthogonal is C⊥ = {(0, 0), (1, 3), (2, 2), (3, 1)}. Then we have that
Hull(C) = {(0, 0), (2, 2)}. The Gray image of the linear code C is φ(C) =
{(0, 0, 0, 0), (0, 1, 0, 1), (1, 1, 1, 1), (1, 0, 1, 0)}. This binary code is self-orthogonal (in
fact it is self-dual), so Hull(φ(C)) = φ(C). It is immediate that φ(Hull(C)) 6=
Hull(φ(C)). This shows that it is not always the case for codes over Z4 that
φ(Hull(C)) = Hull(φ(C)).

We note that in this case Hull(φ(C⊥)) = φ(C⊥) as well and so φ(Hull(C⊥)) 6=
Hull(φ(C⊥)).

4. Counting codes. In this section, we begin by giving some foundational count-
ing results which we shall use to determine the number of codes with a hull of a
given size.

In [25], the number of distinct linear codes over finite fields which have a hull
of given dimension and the average hull dimension of linear codes was given. We
consider here the case for the rings of order 4, which is the starting point when
studying codes over rings. The ring F4 is the field with 4 elements so it was studied
in [25].

Our main goal is to answer the following question. How many linear (additive)
codes C over a ring R are there where |Hull(C)| is a given constant. Of course,
there are only certain possible values for this constant. The problem can be made
more precise when we have a definition of type. Then we can say, how many codes
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are there where the type of the Hull(C) is (k0, k1). We can restate the problem
according to the following theorem.

Theorem 4.1. The number of linear (additive) codes C of length n over a finite
commutative Frobenius ring R with |Hull(C)| = m is equal to the number of linear

codes C over R with |C + C⊥| = |R|n
m .

Proof. Given a linear code C, we have, C ⊂ Hull(C)⊥ and C⊥ ⊂ Hull(C)⊥. Then

|C + C⊥| =
|C||C⊥|
|Hull(C)|

=
|R|n

|Hull(C)|
= |Hull(C)⊥|.

This gives the result.
The same proof is true for additive codes by simply replacing C⊥ with CM .

We note that for linear codes over fields, we get the result about the cardinality
of the code C + C⊥ by considering dimensions of codes, but we do not have the
notion of a dimension for a module over a finite commutative ring. This means that
we can phrase the question in terms of the size of the intersection or in terms of the
size of the sum of the codes.

We give the following theorem for the rings of order 4 as a corollary of Theorem
3.3 in the authors’ paper [15], which gives the number of distinct codes over a
finite chain ring with maximal ideal 〈γ〉, where γ has nilpotency e. We require the
following results to perform the desired counting. The first counts the number of
linear codes over the chain rings of order 4.

Theorem 4.2. [15] Let R be one of the rings Z4 or F2 + uF2, u
2 = 0, with type

(k0, k1), with maximal ideal |R/m| = q = 2 and nilpotency e = 2. The number of
linear codes over R is given by the following formula,[

n
k0, k1

]
q,e

=

[
n

k0, k1

]
2,2

=

∏k0−1
i=0 (22n − 2n+i)

∏k1−1
j=0 (2n − 2k0+j)∏k0−1

i=0 (22k0+k1 − 2k0+k1+i)
∏k1−1
j=0 (2k0+k1 − 2k0+j)

.

The second is the following theorem from [22, 23, 24], where they count the
number of self-orthogonal codes over a finite field.

Theorem 4.3. [22, 23, 24] Let n and q be positive even integers and k ≤ n/2. The
number of self-orthogonal codes over Fq of length n and dimension k is

σn,k =
qn−k − 1

qn − 1

k∏
i=1

qn−2i+2 − 1

qi − 1
.

The third and fourth results are the following two lemmas given in [25], for codes
over finite fields. Note that the first lemma counts subcodes whereas the second
counts supercodes.

Lemma 4.4. [25] Let C be a linear code over Fq of length n and dimension k. The
number of self-orthogonal codes V over Fq of length n and dimension l such that

V ⊆ Hull(C) is the Gaussian binomial

[
dim(Hull(C))

l

]
q

.
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Lemma 4.5. [25] Let V be a binary self-orthogonal code over Fq of length n and
dimension l. The number of binary linear codes C over Fq of length n and dimension

k such that V ⊆ Hull(C) is

[
n− 2l
k − l

]
q

.

The final counting result we need is the following theorem which is Theorem 4.5
in [25], when q = 2.

Theorem 4.6. [25] Let σn,i denote the number of self-orthogonal codes over Fq of
length n and dimension i. Let k ≤ n/2 and l ≤ k. The number of linear codes over
Fq of length n and dimension k where the dimension of the hull is l is

k∑
i=l

[
n− 2i
k − i

]
q

[
i
l

]
q

(−1)i−lq(
i−l
2 )σn,i.

4.1. Counting codes over F4. We now shall count codes over F4, both codes
that are additive and codes that are linear. Consider the following duality on the
additive group of F4:

ME 0 1 ω 1 + ω
0 1 1 1 1
1 1 −1 1 −1
ω 1 1 −1 −1

1 + ω 1 −1 −1 1

Lemma 4.7. Let v,w ∈ Fn4 . Then [v,w]M = 1 if and only if [α(v), α(w)] = 0.

Proof. The result follows by examining the table of inner-products of the image of
the elements of F4, under α.

00 10 01 11
00 0 0 0 0
10 0 1 0 1
01 0 0 1 1
11 0 1 1 0

Theorem 4.8. Let C be an additive code over F4. Then Hull(α(C)) =
α(HullME

(C)).

Proof. The proof is the same as Theorem 3.2 using Lemma 4.7.

This leads to the following important theorem for additive codes over F4.

Theorem 4.9. The number of additive codes over F4 of length n where HullME
(C)

has size 2k is equal to the number of binary linear codes of length 2n with hulls of
dimension k.

Proof. Every additive code over F4 of length n is of the form α−1(C) for some binary
linear code C of length 2n. Then by Theorem 4.8 we have the result.

This brings us to the most important result for additive codes where we count
the number of additive codes with a hull of given size.
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Theorem 4.10. The number of additive codes over F4 of length n and size 2k

whose hull with respect to ME has size 2l with l ≤ k and k ≤ n is

k∑
i=l

[
2n− 2i
k − i

]
2

[
i
l

]
2

(−1)i−l2(i−l
2 )σ2n,i,

where σn,i is the number of binary self-orthogonal codes of length n and dimension
i.

Proof. The result follows from Theorem 4.9 and Theorem 4.6.

Example 2. Let n = 2, k = 2 and l = 1. Then by Theorem 4.3, σ4,1 = 7 and
σ4,2 = 3. The number of additive codes over F4 of length 2 and size 22 whose
hull has size 21 is 12 by Theorem 4.10. These are the additive codes given by the
following generating matrices:(

1 0
w 1

)
,

(
1 0
w w

)
,

(
1 0
0 1 + w

)
,

(
w 0
1 1

)
,

(
w 0
1 w

)
,

(
w 0
0 1 + w

)
,

(
0 1

1 + w 0

)
,

(
0 1
1 w

)
,

(
0 1
w w

)
,

(
0 w

1 + w 0

)
,

(
0 w
1 1

)
,

(
0 w
w 1

)
.

Note that Theorem 4.6 gives the number of linear codes over F4 of length n and
dimension k where the dimension of the hull is l.

Theorem 4.11. The ratio of the number of linear codes over F4 of length n and
dimension k and the number of additive codes over F4 of length n and size 4k goes
to 0 as n goes to infinity.

Proof. The number of linear codes of length n and dimension k is

[
n
k

]
4

and the

number of additive codes of length n and size 4k is the same as the number of binary

linear codes of length 2n and dimension 2k which is

[
2n
2k

]
2

. Then we have

lim
n→∞

[
n
k

]
4[

2n
2k

]
2

=

(4n−1)(4n−1−1)(4n−2−1)···(4n−k+1−1)
(4k−1)(4k−1−1)···(4−1)

(22n−1)(22n−1−1)···(22n−2k+1−1)
(22k−1)(22k−1−1)···(2−1)

= lim
n→∞

[
n
k

]
4[

n
k

]
4

(22n−1−1)(22n−3−1)···(22n−2k+1−1)
(22k−1−1)(22k−3−1)···(2−1)

= lim
n→∞

1
(22n−1−1)(22n−3−1)···(22n−2k+1−1)

(22k−1−1)(22k−3−1)···(2−1)

= 0.

This result gives another reason for the importance of additive codes. Namely,
they are abundant with respect to linear codes of the same size.
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Theorem 4.12. Let N1 be the number of linear codes over F4 of length n and
dimension k with a given hull of dimension l. Let N2 be the number of additive
codes over F4 of length n and size 4k whose hull with respect to ME has size 4l,

l ≤ k. Then the ratio
N1

N2
goes to 0 as n goes to infinity.

Proof. By Theorem 4.6, when q = 4, we have

N1 =

k∑
i=l

[
n− 2i
k − i

]
4

[
i
l

]
4

(−1)i−l4(i−l
2 )σn,i,

where σn,i denotes the number of self-orthogonal codes over F4 of length n and
dimension i, i = l, . . . , k. By Theorem 4.10, we have

N2 =

k∑
j=l

[
2n− 4j
2k − 2j

]
2

[
2j
2l

]
2

(−1)2j−2l2(2j−2l
2 )σ2n,2j ,

where σ2n,2j denotes the number of binary self-orthogonal codes of length 2n and
dimension 2j, j = l, . . . , k.

Note that we are interested in the additive codes over F4 of length n which have
a size of 4k and so they are the binary linear codes of length 2n and dimension 22k.

First, we have the following equalities:

1.

 n− 2s
k − s


4 2n− 4s

2k − 2s


2

= 1
(22n−4s−1−1)(22n−4s−3−1)···(22n−2s−2k+1−1)

(22k−2s−1−1)(22k−2s−3−1)···(2−1)

.

2.

 s
l


4 2s

2l


2

= 1
(22s−1−1)(22s−3−1)···(22s−2l+1−1)

(22l−1−1)(22l−3−1)···(2−1)

3. (−1)s−l

(−1)2s−2l = (−1)s/2+l.

4. 4(
s−l
2 )

2(
2s−2l

2 )
= 2−2(l−s)(l+s).

5.
σn,s

σ2n,2s
= 1

(22n−2−1)(22n−6−1)···(22n−4s+2−1)

(22s−1−1)(22s−3−1)···(2−1)

.

For j = 1, 2 . . . , k, we rewrite the fractions given above as follows:

1.

[
2n− 4j
2k − 2j

]
2

· 1
(22n−4j−1−1)(22n−4j−3−1)···(22n−2j−2k+1−1)

(22k−2j−1−1)(22k−2j−3−1)···(2−1)

, for

[
n− 2j
k − j

]
4

,

2.

[
2j
2l

]
2

· 1
(22j−1−1)(22s−3−1)···(22j−2l+1−1)

(22l−1−1)(22l−3−1)···(2−1)

, for

[
j
l

]
4

,

3. (−1)2j−2l · (−1)j/2+2 for (−1)j−l.

4. 2(2j−2l
2 ) · 2−2(l−j)(l+j), for 4(j−l

2 )

5. σ2n,2j · 1
(22n−2−1)(22n−6−1)···(22n−4s+2−1)

(22j−1−1)(22j−3−1)···(2−1)

, for σn,j .

Finally, we use the last statements to get the result:

lim
n→∞

N1

N2
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= lim
n→∞

∑k
i=l

[
n− 2i
k − i

]
4

[
i
l

]
4
(−1)i−l4

(
i−l
2

)
σn,i

∑k
j=l

[
2n− 4j
2k − 2j

]
2

[
2j
2l

]
2
(−1)2j−2l2

(
2j−2l

2

)
σ2n,2j

= lim
n→∞

∑k
j=l

[
2n− 4j
2k − 2j

]
2
· 1

(22n−4j−1−1)(22n−4j−3−1)···(22n−2j−2k+1−1)

(22k−2j−1−1)(22k−2j−3−1)···(2−1)

· σ2n,2j

∑k
j=l

[
2n− 4j
2k − 2j

]
2

[
2j
2l

]
2
(−1)2j−2l2

(
2j−2l

2

)
σ2n,2j

·
1

(22n−2−1)(22n−6−1)···(22n−4j+2−1)

(22j−1−1)(22j−3−1)···(2−1)

·
(
(−1)

2j−2l
(−1)

j/2+2
2

(
2j−2l

2

)
2
−2(l−j)(l+j)

)
·
[

2j
2l

]
2

·
1

(22j−1−1)(22j−3−1)···(22j−2l+1−1)

(22l−1−1)(22l−3−1)···(2−1)

= 0.

4.2. Counting codes over F2[v]/〈v2+v〉. We now move to the ring F2[v]/〈v2+v〉
where we shall use the Chinese Remainder Theorem extensively in our counting.
We shall begin by counting additive codes, then linear codes, then self-orthogonal
codes. These are required to count the number of codes with a given hull size.

Consider the following duality on the additive group of F2[v]/〈v2 + v〉:
ME 0 1 v 1 + v

0 1 1 1 1
1 1 1 −1 −1
v 1 −1 −1 1

1 + v 1 −1 1 −1

Lemma 4.13. Let v,w ∈ F2[v]/〈v2 + v〉n. Then [v,w]M = 1 if and only if
[β(v), β(w)] = 0.

Proof. The result follows by examining the table of inner-products of the image of
the elements of F2[v]/〈v2 + v〉, under β.

0 11 01 10
0 0 0 0 0
11 0 0 1 1
01 0 1 1 0
10 0 1 0 1

Theorem 4.14. Let C be an additive code over F2[v]/〈v2+v〉. Then Hull(β(C)) =
β(HullMe

(C)).

Proof. The proof is the same as Theorem 3.2 using Lemma 4.13.

This leads to the following important theorem for additive codes over F2[v]/〈v2+
v〉.

Theorem 4.15. The number of additive codes over F2[v]/〈v2+v〉 of length n where
HullME

(C) has size 2k is equal to the number of binary linear codes of length 2n
with hulls of dimension k.

Proof. Every additive code over F2[v]/〈v2 + v〉 of length n is of the form β−1(C)
for some linear binary code C of length 2n. Then by Theorem 4.14 we have the
result.
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Theorem 4.16. The number of additive codes over F2[v]/〈v2 + v〉 of length n and
size 2k whose hull size is 2l, l ≤ k, is

k∑
i=l

[
2n− 2i
k − i

]
2

[
i
l

]
2

(−1)i−l2(i−l
2 )σ2n,i.

Proof. The result follows from Theorem 4.6 and Theorem 4.15.

Example 3. Let n = 2, k = 2 and l = 1. Then by Theorem 4.3, σ4,1 = 7 and
σ4,2 = 3. The number of additive codes over F2[v]/〈v2 + v〉, v2 = v, of length 2 and
size 22 whose hull has size 21 is 12 by Theorem 4.16. These are the additive codes
given by the following generating matrices:(

1 + v 0
v 1 + v

)
,

(
1 + v 0
v v

)
,

(
1 + v 0
0 1

)
,

(
v 0

1 + v 1 + v

)
,

(
v 0

1 + v v

)
,(

v 0
0 1

)
,

(
0 1 + v
1 0

)
,

(
0 1 + v

1 + v v

)
,

(
0 1 + v
v v

)
,

(
0 v
1 0

)
,(

0 v
1 + v 1 + v

)
,

(
0 v
v 1 + v

)
.

Next we shall count the linear codes in this setting. We begin with a technical
lemma.

Lemma 4.17. Let C = CRT (C1, C2) be a linear code over the ring F2[v]/〈v2 + v〉
of length n and size 2k. The Gray image β(C) of C is a binary linear code of length
2n and dimension k = k1 + k2, where Ci is a binary linear code of length n and
dimension ki, for i = 1, 2. respectively.

Proof. It follows from the fact that β is an isomorphism between the rings
F2[v]/〈v2 + v〉 and F2 × F2.

Following definition is given in [32].

Definition 4.18. Let x = (x1, . . . , xn) ∈ (F2[v]/〈v2 + v〉)n with xi = ri + vqi, with
1 ≤ i ≤ n.

β(x) = (r, r + q),

such that x = r + vq ∈ (F2[v]/〈v2 + v〉)n where r = (r1, r2, . . . , rn) and q =
(q1, q2, . . . , qn) are binary vectors.

By the previous definition, we have the following important theorem. It is also
given in [32].

Theorem 4.19. Let C be a linear code over F2[v]/〈v2 + v〉 of length n. Then
β(C) can be written as a direct product of binary linear codes C1 and C2 where
C1 = {x ∈ Fn2 : x + vy ∈ C,y ∈ Fn2} and C2 = {x + y ∈ Fn2 : x + vy ∈ C}.
Moreover, C = CRT (C1, C2).

Proof. Let C be a linear code over F2[v]/〈v2 + v〉. Let β(C) be the image of C
under β. Take a vector w = (r1, . . . , rn, q1, . . . , qn) ∈ β(C). Let ci = ri + v(ri +
qi), i = 1, 2 . . . , n. Then, since β is a bijection, β−1(w) = c = (c1, c2, . . . , cn) ∈
C. Let C1 = {x ∈ Fn2 |x + vy ∈ C,y ∈ Fn2} and C2 = {x + y ∈ Fn2 |x + vy ∈
C}. Then we get (r1, . . . , rn, q1, . . . , qn) ∈ C1 × C2, where (r1, . . . , rn) ∈ C1 and
(q1, . . . , qn) ∈ C2. Therefore, we have that β(C) ⊆ C1 × C2. On the other hand,
take (r1, . . . , rn, q1, . . . , qn) ∈ C1×C2. Then (r1, . . . , rn) ∈ C1 and (q1, . . . , qn) ∈ C2.
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Then by the definitions of C1 and C2, we have that c = (c1, c2, . . . , cn), where ci =
ri + v(ri + qi). Then c = r + v(r + q), and so β(c) = (r1, . . . , rn, q1, . . . , qn) ∈ β(C),
which means that C1 × C2 ⊆ β(C). Therefore we have that β(C) = C1 × C2. By
the definitions of C1 and C2, we have that CRT (C1, C2) = C.

We first need to determine the number of linear codes since this was not previ-
ously given in the literature.

Theorem 4.20. The number of linear codes over F2[v]/〈v2 + v〉 of length n and
size 2k is equal to ∑

k1+k2=k

[
n
k1

]
2

·
[
n
k2

]
2

.

Proof. Let C be a linear code over F2[v]/〈v2 +v〉 such that C = β−1(C1, C2), where
C1 and C2 are binary linear codes of length n and dimension k1 and k2, respectively.
A linear code C over F2[v]/〈v2 + v〉 of length n of size 2k is uniquely determined
by two binary linear codes C1 and C2, both of length n and dimension k1 and k2,

respectively. Then the product of the number of binary linear codes C1,

[
n
k1

]
2

,

and the number of binary linear codes C2,

[
n
k2

]
2

, for each k = k1 + k2, gives the

desired result.

Example 4. Let n = 2 and k = 2. The number of linear codes over F2[v]/〈v2 + v〉

of length n and size 22 is

[
2
0

]
2

·
[

2
2

]
2

+

[
2
1

]
2

·
[

2
1

]
2

+

[
2
2

]
2

·
[

2
0

]
2

=

1 + 9 + 1 = 11. These codes are given by the following generating matrices:(
1 0

)
,
(

1 1
)
,
(

1 v
)
,
(

1 1 + v
)
,
(

0 1
)
,
(
v 1

)
,
(

1 + v 1
)
,(

v 0
0 v

)
,

(
v 0
0 1 + v

)
,

(
1 + v 0

0 v

)
,

(
1 + v 0

0 1 + v

)
.

The following lemma is given in [8].

Lemma 4.21. Let C be a linear code over F2[v]/〈v2 + v〉 of length n. Then C =
CRT (C1, C2) is Euclidean self-orthogonal if and only if C1 and C2 are binary self-
orthogonal codes.

Next, we need to determine the number of self-orthogonal codes.

Lemma 4.22. Let C be a linear code over F2[v]/〈v2 + v〉 of length n and size 2k.
The number of Euclidean self-orthogonal codes V over F2[v]/〈v2 + v〉 of length n
and size 2l such that V ⊆ Hull(C) is equal to the number∑

l1+l2=l

[
dim(Hull(C1))

l1

]
·
[
dim(Hull(C2))

l2

]
,

where C = CRT (C1, C2), C1 and C2 are binary linear codes and li is the dimension
of the binary self-orthogonal code Vi ⊆ Hull(Ci), li ≤ dim(Hull(Ci)), for i = 1, 2,
such that l1 + l2 = l and CRT (V1, V2) = V.

Proof. Let C be a linear code over F2[v]/〈v2 + v〉 of length n such that C =
CRT (C1, C2), where C1 and C2 are binary linear codes both of length n and di-
mension k1 and k2, respectively. Let c = r + vq be a codeword in C, then by
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Definition 4.18, we have that β(c) = (r, r + q), where r = (r1, r2, . . . , rn) and
q = (q1, q2, . . . , qn) are binary vectors. By Theorem 4.19, we write β(C) = C1×C2,
where C1 = {x ∈ Fn2 |x + vy ∈ C, y ∈ Fn2} and C2 = {x + y ∈ Fn2 |x + vy ∈ C}.
Then, we have that

Hull(β(C)) = β(C) ∩ (β(C))⊥

= C1 × C2 ∩ (C1 × C2)⊥

= C1 × C2 ∩ C⊥1 × C⊥2
= C1 ∩ C⊥1 × C2 ∩ C⊥2
= Hull(C1)×Hull(C2).

By Theorem 3.2, we have that β(Hull(C)) = Hull(β(C)) and so β(Hull(C)) =
Hull(C1)×Hull(C2).

On the other hand, let V = CRT (V1, V2) be a Euclidean self orthogonal code
over F2[v]/〈v2 + v〉 such that V ⊆ Hull(C). By Lemma 4.21, we have that V1
and V2 are binary self-orthogonal codes of dimension l1 and l2, respectively, such
that l1 + l2 = l. By Theorem 4.19, we have that β(V ) = V1 × V2, where V1 =
{x ∈ Fn2 |x + vy ∈ V, y ∈ Fn2} and V2 = {x + y ∈ Fn2 |x + vy ∈ V }. Take a vector
w ∈ β(V ). Then since β is a bijection, we have β−1(w) ∈ V ⊆ Hull(C). Therefore,
we have that w ∈ β(Hull(C)), which means that β(V ) ⊆ β(Hull(C)) = Hull(C1)×
Hull(C2). Therefore, we have that V1 × V2 = β(V ) ⊆ Hull(C1)×Hull(C2). So we
have that V1 ⊆ Hull(C1) and that V2 ⊆ Hull(C2), by noting that all the linear
codes have at least the zero vector so that they are not empty. The number of

binary self-orthogonal codes V1 such that V1 ⊆ Hull(C1) is

[
dim(Hull(C1))

l1

]
2

and the number of binary self-orthogonal codes V2 such that V2 ⊆ Hull(C2) is[
dim(Hull(C2))

l2

]
2

, by noting that each subcode of a binary self-orthogonal code

is a binary self-orthogonal code. Therefore, by Theorem 4.20, for all possible l1 and
l2 with l1 + l2 = l, the number of self-orthogonal codes β(V ) such that β(V ) ⊆
β(Hull(C)) is ∑

l1+l2=l

[
dim(Hull(C1))

l1

]
2

·
[
dim(Hull(C2))

l2

]
2

,

which gives the desired result.

Example 5. Let C = CRT (C1, C2), where C1 is generated by the set of vectors

{(1, 1, 0, 0), (0, 0, 1, 1)}

and C2 is generated by the vector (1, 1, 1, 1). We have that C1 is a binary linear
code of length 4 and dimension 2 and C2 is a binary linear code of length 4 and
dimension 1. Since C1 and C2 are self-orthogonal codes; Hull(Ci) = Ci, for i = 1, 2.

The number of Euclidean self-orthogonal codes V of size 2l such that V ⊂

Hull(C), where l = 1 is equal to

[
2
1

]
2

·
[

1
0

]
2

+

[
2
0

]
2

·
[

1
1

]
2

= 3 + 1 = 4. The

generators of these codes are given as follows:(
v v v v

)
,
(

1 + v 1 + v 0 0
)
,(

0 0 1 + v 1 + v
)

,
(

1 + v 1 + v 1 + v 1 + v
)
.
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The number of Euclidean self-orthogonal codes V of size 2l such that V ⊂

Hull(C), where l = 2 is equal to

[
2
2

]
2

·
[

1
0

]
2

+

[
2
1

]
2

·
[

1
1

]
2

+

[
2
0

]
2

·
[

1
2

]
2

=

1 + 3 + 0 = 4.
The generators of these codes are given as follows:(
1 1 1 1

)
,
(

1 1 v v
)
,
(

v v 1 1
)
,

(
1 + v 1 + v 0 0
0 0 1 + v 1 + v

)
.

Note that C = {(0, 0, 0, 0), (v, v, v, v), (1 + v, 1 + v, 0, 0), (1, 1, v, v), (0, 0, 1 + v, 1 +
v), (v, v, 1, 1), (1 + v, 1 + v, 1 + v, 1 + v), (1, 1, 1, 1)} is a Euclidean self-orthogonal
code over F2[v]/〈v2 + v〉, and so Hull(C) = C.

Lemma 4.23. Let C be a linear code over F2[v]/〈v2 + v〉 of length n. Let
V ⊆ Hull(C) be a Euclidean self-orthogonal code of length n and size 2l such that
CRT (V1, V2) = V where V1 and V2 are self-orthogonal binary codes. The number
of linear codes C of length n and size 2k such that V ⊆ Hull(C) is equal to∑

k1+k2=k

[
n− 2l1
k1 − l1

]
2

·
[
n− 2l2
k2 − l2

]
2

,

where C1 and C2 are binary linear codes such that CRT (C1, C2) = C and ki and li
are the dimensions of the codes Ci and Vi with li ≤ ki, respectively, for i = 1, 2.

Proof. Let CRT (V1, V2) = V be a Euclidean self-orthogonal code over F2[v]/〈v2+v〉
of length n and size 2l such that V ⊆ Hull(C) where V1 and V2 are binary self-
orthogonal codes of dimension l1 and l2, respectively. Let CRT (C1, C2) = C, where
C1 and C2 are binary linear codes of dimension k1 and k2, respectively. Then by
Theorem 4.19, we write β(V ) = V1 × V2 and β(C) = C1 × C2, where C1 = {x ∈
Fn2 |x + vy ∈ C, y ∈ Fn2}, C2 = {x + y ∈ Fn2 |x + vy ∈ C} and V1 = {x ∈ Fn2 |x + vy ∈
V,y ∈ Fn2} and V2 = {x+y ∈ Fn2 |x+vy ∈ V }. By the proof of Lemma 4.22, we have
that β(V ) ⊆ β(Hull(C)) ⊆ β(C) and so V1×V2 ⊆ Hull(C1)×Hull(C2) ⊆ C1×C2.
Since all the linear codes are nonempty as having at least the zero vector, we have
the following two relations:

V1 ⊆ Hull(C1) ⊆ C1 (6)

V2 ⊆ Hull(C2) ⊆ C2. (7)

By (6), we have that V1 ⊆ C1 ∩ C⊥1 and so V1 ⊆ C1 ⊆ V ⊥1 . By [25], the number

of codes C1 such that V1 ⊆ C1 ⊆ V ⊥1 , is equal to

[
n− 2l1
k1 − l1

]
2

. Similarly by (7), the

number of codes C2 such that V2 ⊆ C2 ⊆ V ⊥2 , is equal to

[
n− 2l2
k2 − l2

]
2

. Therefore,

by Theorem 4.20, for all possible k1 and k2 such that k1 + k2 = k, the number of
codes C such that V ⊆ Hull(C) is equal to∑

k1+k2=k

[
n− 2l1
k1 − l1

]
2

·
[
n− 2l2
k2 − l2

]
2

,

by noting that β is an isomorphism and C is a linear code which is uniquely deter-
mined by the binary linear codes C1 and C2,

Example 6. Let V = {(0, 0), (v, v)}. The code V is a Euclidean self-orthogonal
code over F2[v]/〈v2 + v〉. Let V = CRT (V1, V2), then V1 is generated by the vector
(0, 0) and V2 is generated by the vector (1, 1). The dual of V1 is the code F2

2. By
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the relation V1 ⊆ C1 ⊆ V ⊥1 , the number of binary linear codes C1 of length 2

and dimension 1 is equal to

[
n− 2l1
k1 − l1

]
2

=

[
2
1

]
2

= 3. These binary codes are

generated by the following matrices:

(
0 1

)
,
(

1 0
)
,
(

1 1
)
.

The dual of V2 is itself since it is a self-dual code. By the relation V2 ⊆ C2 ⊆ V ⊥2 ,
the number of binary linear codes C2 of length 2 and dimension 1 is equal to[

0
0

]
2

= 1. This binary code is the code C2 = V2.

Therefore, by Theorem 4.20, the number of linear codes of length n and size 22

such that V ⊆ Hull(C) is equal to 3 · 1 = 3. These codes, D1, D2, D3, are exactly
the codes which are the CRT of the codes C1 and C2. They are given as follows:
D1 = CRT (C1, C2) = {(0, 0), (v, 1), (v, v), (0, 1 + v)} where C1 =

(
0 1

)
and

C2 =
(

1 1
)
.

The code D2 = CRT (C1, C2) = {(0, 0), (1, v), (v, v), (1 + v, 0)} where C1 =(
1 0

)
and C2 =

(
1 1

)
.

The code D3 = CRT (C1, C2) = {(0, 0), (1, 1), (v, v), (1 + v, 1 + v)} where C1 =(
1 1

)
= C2.

For the codes D1, D2, D3, we have that V ⊆ Hull(Di), where V is generated by
the vector (v, v), and Hull(Di) is generated by (v, v), for i = 1, 2 and generated
by (1, 1), for i = 3. Note that the only possible dimension for C2 is 1, so the only
possible dimension for C1 for the considered case is 1, even though C1 may have
dimensions 0, 1 or 2.

Theorem 4.24. Let σn,l be the number of Euclidean self-orthogonal codes over
F2[v]/〈v2 + v〉 of length n and size 2l. Then we have,

σn,l =
∑

k=k1+k2

∑
l=l1+l2

(∑k1
i=l1

[
i
l1

]
2

·Nn,k1,i

)(∑k2
j=l2

[
j
l2

]
2

·Nn,k2,j

)
[
n− 2l1
k1 − l1

]
2

·
[
n− 2l2
k2 − l2

]
2

, (8)

where Nn,k1,i and Nn,k2,j denote the number of binary linear codes with the hull
dimensions i and j, for all l1 ≤ i ≤ k1, l2 ≤ j ≤ k2, l1 + l2 = l and i, j, k, k1, k2, l
are positive integers.

Proof. Let C be a linear code over F2[v]/〈v2+v〉 of length n size 2l. By Lemma 4.22,

Hull(C) contains
∑
l1+l2=l

[
dim(Hull(C1))

l1

]
·
[
dim(Hull(C2))

l2

]
Euclidean self-

orthogonal codes of size 2l, where CRT (C1, C2) = C and C1 and C2 are binary linear
codes given in Theorem 4.19 and l = l1 + l2. By Lemma 4.23, any Euclidean self-
orthogonal code over F2[v]/〈v2 + v〉 of size 2l, for l = l1 + l2, is contained in the hull

of
∑
k1+k2=k

[
n− 2l1
k1 − l1

]
2

·
[
n− 2l2
k2 − l2

]
2

different linear codes over F2[v]/〈v2 + v〉

of size 2k. Therefore, by Theorem 4.21, the number of Euclidean self-orthogonal
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codes, σn,l, over F2[v]/〈v2 + v〉 of size 2l is equal to

σn,l =

 ∑
C1⊆Fn

2

dim(C1)=k1

[
dim(Hull(C1))

l1

]
2


 ∑

C2⊆Fn
2

dim(C2)=k2

[
dim(Hull(C2))

l2

]
2


∑
k1+k2=k

[
n− 2l1
k1 − l1

]
2

·
[
n− 2l2
k2 − l2

]
2

,

(9)
where k = k1 + k2, ki is the dimension of binary linear codes Ci, for i = 1, 2, and
l = l1 + l2, li is the dimension of the self-orthogonal codes Vi, respectively, such that
Vi ⊂ Hull(Ci), for i = 1, 2, by noting that the number of Euclidean self-orthogonal
codes, σn,l, over F2[v]/〈v2 + v〉 is equal to the product of binary self-orthogonal
codes Vi of dimension li, for i = 1, 2, by Theorem 4.20 and Theorem 4.21.

We rewrite the numerator of (9), by taking Nn,k1,i and Nn,k2,j as the number
of binary linear codes of dimension ki with a hull of dimension li for i = 1, 2,
respectively. Then considering for all l1 ≤ i ≤ k1, l2 ≤ j ≤ k2 and l1 + l2 = l, we
get the result.

Note that the number given by (8), is the multiplication of the number of binary
self orthogonal codes over of length n and dimension l1 and the number of binary
self orthogonal codes over of length n and dimension l2.

The next theorem is our desired result. Namely, it gives the number of codes
over F2[v]/〈v2 + v〉 that have a hull of a given size.

Theorem 4.25. Let k ≤ n/2 and l ≤ k. The number of linear codes over F2[v]/〈v2+
v〉 of length n and size 2k where the size of the hull is 2l is equal to∑

k=k1+k2

∑
l=l1+l2

Nn,k1,l1 ·Nn,k2,l2

=
∑

k=k1+k2

∑
l=l1+l2

(
k1∑
i=l1

[
n− 2i
k1 − i

] [
i
l1

]
(−1)i−l12(i−l1

2 )σn,i

)

·

 k2∑
j=l2

[
n− 2j
k2 − j

] [
j
l2

]
(−1)j−l22(j−l2

2 )σn,j


where σn,i is the number of binary self-orthogonal codes of length n and size 2i.

Proof. It follows from Theorem 4.6 and Theorem 4.24.

Table 1 illustrates the theorem for some n, k and l. Note that we are only inter-
ested in even lengths. The number for (n, k, l) = (n, k, 0) gives the number of codes
over F2[v]/〈v2 + v〉 when the hull is trivial. These codes are in fact LCD codes.
These numbers for l = 0, which can be seen on Table 1, give the following sequence
in [29] by reference number A000302: 4, 16, 64, 256, 1024, . . . . Next, in particular,
we give two examples in detail.

Example 7. Let n = 2, k = 1 and l = 1. Then, we have that (k1, k2) ∈
{(1, 0), (0, 1)} and (l1, l2) ∈ {(1, 0), (0, 1)}, with li ≤ ki, for i = 1, 2. Then the
number of linear codes over F2[v]/〈v2 + v〉 of length 2 and size 21 with a hull of size
21 is 2, by Theorem 4.25. These codes are generated by the following matrices:(

v v
)
,
(

1 + v 1 + v
)
.
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Table 1. The number of codes over F2[v]/〈v2 +v〉 of length n and
size 2k, with a hull of size 2l

n k l Number n k l Number n k l Number

2 0 0 1 8 0 0 1 10 0 0 1
1 0 4 1 0 256 1 0 1024
1 1 2 1 1 254 1 1 1022

4 0 0 1 2 0 27264 2 0 436736
1 0 16 2 1 40576 2 1 653824
1 1 14 2 2 18775 2 2 304471
2 0 104 3 0 1478656 3 0 94961664
2 1 136 3 1 2499296 3 1 161622912
2 2 55 3 2 1382976 3 2 90282240

6 0 0 1 3 3 338832 3 3 22346160
1 0 64 4 0 40786432 4 0 1010 · 10520
1 1 62 4 1 65877504 4 1 1010 · 17134
2 0 1696 4 2 44123352 4 2 1010 · 11603
2 1 2464 4 3 13590432 4 3 109 · 36314
2 2 1111 4 4 2104929 4 4 569194425
3 0 22784 5 0 1011 · 51070
3 1 37432 5 1 1011 · 89580
3 2 199206 5 2 1011 · 63325
3 3 4680 5 3 1011 · 23516

5 4 1010 · 43198
5 5 109 · 42609

We note that σ2,1 = 1, by Theorem 4.3.

Example 8. Let n = 4, k = 2 and l = 1. Then, we have that (k1, k2) ∈
{(2, 0), (1, 1), (0, 2)} and (l1, l2) ∈ {(1, 0), (0, 1)}. We have following 3 cases:

1. (k1, k2) = (2, 0) and (l1, l2) = (1, 0).(
2∑
i=1

[
4 − 2i

2 − i

] [
i

1

]
(−1)i−12

(
i−1
2

)
σ4,i

) 0∑
j=0

[
4 − 2j

0 − j

] [
j
0

]
(−1)j−02

(
j−0
2

)
σ4,j

 = 12.

2. (k1, k2) = (1, 1) and (l1, l2) = (1, 0), (l1, l2) = (0, 1).(
1∑
i=1

[
4 − 2i

1 − i

] [
i

1

]
(−1)i−12

(
i−1
2

)
σ4,i

) 1∑
j=0

[
4 − 2j

1 − j

] [
j

0

]
(−1)j−02

(
j−0
2

)
σ4,j

 +

(
1∑
i=0

[
4 − 2i
1 − i

] [
i
0

]
(−1)i−02

(
i−0
2

)
σ4,i

) 1∑
j=1

[
4 − 2j
1 − j

] [
j
1

]
(−1)j−12

(
j−1
2

)
σ4,j


(7)(8) + (8)(7) = 112.

3. (k1, k2) = (0, 2) and (l1, l2) = (0, 1).(
0∑
i=0

[
4 − 2i
0 − i

] [
i
0

]
(−1)i−02

(
i−0
2

)
σ4,i

) 2∑
j=1

[
4 − 2j
2 − j

] [
j
1

]
(−1)j−12

(
j−1
1

)
σ4,j

 = 12.

Therefore, the number of linear codes over F2[v]/〈v2 + v〉 of length 4 and size
22 with a hull of size 21 is 12 + 112 + 12 = 136, by Theorem 4.25. We note that
σ4,0 = 1, σ4,1 = 7 and σ4,2 = 3 by Theorem 4.3.
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4.3. Counting additive codes over F2[u]/〈u2〉. In this section, we shall count
additive codes over F2[u]/〈u2〉.

Consider the following duality on the additive group of F2[u]/〈u2〉:
0 1 u 1 + u

0 1 1 1 1
1 1 −1 1 −1
u 1 −1 1 −1

1 + u 1 1 −1 −1

We note that this duality is often called the Euclidean duality.

Lemma 4.26. Let v,w ∈ F2[u]/〈u2〉n. Then [v,w]M = 1 if and only if
[ψ(v), β(w)] = 0.

Proof. The result follows by examining the table of inner-products of the image of
the elements of F2[u]/〈u2〉, under ψ.

00 01 11 10
00 0 0 0 0
01 0 1 0 1
11 0 1 0 1
10 0 0 1 1

Theorem 4.27. Let C be an additive code over F2[u]/〈u2〉. Then Hull(ψ(C)) =
ψ(HullME

(C)).

Proof. The proof is the same as Theorem 3.2 using Lemma 4.26.

This leads to the following important theorem for additive codes over F2[u]/〈u2〉.

Theorem 4.28. The number of additive codes over F2[u]/〈u2〉 of length n where
HullME

(C) has size 2k is equal to the number of binary linear codes of length 2n
with hulls of dimension k.

Proof. Every additive code over F2[u]/〈u2〉 of length n is of the form ψ−1(C) for
some linear binary code of length n. Then by Theorem 4.27 we have the result.

Theorem 4.29. The number of additive codes over F2[u]/〈u2〉, u2 = 0, of length n
and size 2k whose hull size is 2l, l ≤ k, is

k∑
i=l

[
2n− 2i
k − i

] [
i
l

]
(−1)i−l2(i−l

2 )σ2n,i.

Proof. It follows from Theorem 4.6 and Theorem 4.28.

Example 9. Let n = 2, k = 2 and l = 1. Then by Theorem 4.3, σ4,1 = 7 and
σ4,2 = 3. The number of additive codes over F2[u]/〈u2〉 of length 2 and size 22

whose hull has size 21 is 12 by Theorem 4.29. These are the additive codes given
by the following generating matrices:(

1 + u 0
1 1 + u

)
,

(
1 + u 0
1 1

)
,

(
1 + u 0
0 u

)
,

(
1 0

1 + u 1 + u

)
,

(
1 0

1 + u 1

)
,(

1 0
0 u

)
,

(
0 1 + u
u 0

)
,

(
0 1 + u

1 + u 1

)
,

(
0 1 + u
1 1

)
,

(
0 1
u 0

)
,
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0 1

1 + u 1 + u

)
,

(
0 1
1 1 + u

)
.

Corollary 4.30. Let R be one of the rings F4, F2[v]/〈v2 + v〉 or F2[u]/〈u2〉. Then
the number of additive codes over the ring R of length n and size 2k whose hull size
is equal for each ring R.

Proof. It follows from Theorem 4.9, Theorem 4.10, Theorem 4.16 and Theorem
4.29.

4.4. Counting linear codes over Z4 and F2[u]/〈u2〉. In this section, we shall
count free linear codes over the two non-trivial chain rings of order r, namely
F2[u]/〈u2〉 and Z4. (The field F4 is also a chain ring but trivially so, as it has
no non-trivial ideals.) Since they are both chain rings we can handle them in a
similar manner.

Let R = Z4 or R = F2[u]/〈u2〉. Then any element in R is denoted by a + xb
where x = 2 for Z4 and x = u for F2[u]/〈u2〉. The main difference between the rings
is that the characteristic of F2[u]/〈u2〉 is 2, and the characteristic of Z4 is 4.

Throughout this section, unless otherwise stated, R = Z4 or R = F2[u]/〈u2〉.
A vector over R is called free if it has at least one component 1 or 3 for R = Z4

and 1 or 1 + u for R = F2[u]/〈u2〉 and otherwise it is called a non-free vector. In
other words, a vector is free if it generates a code of size 4. A code is free if every
non-free vector is a multiple of a free vector. It follows that if a code is free over
the ring R then the code is isomorphic to Rk for some k. The next theorem gives
the number of linear codes over R of type (l0, l1) of a linear code over R of type
(k0, k1).

Theorem 4.31. Let C be a linear code over R of type (k0, k1). The number of
subcodes of C over R of type (l0, l1) is equal to

2k0l0+k1l0
∏l0−1
i=0 (2k0 − 2i)

∏l1−1
j=0 (2k0+k1 − 2l0+j)

2l
2
0+2l0l1

∏l0−1
i=0 (2l0 − 2i)

∏l1−1
j=0 (2l1 − 2j)

. (10)

Proof. We apply Theorem 4.2, by considering the code C of type (k0, k1) as the
whole space itself from which we are choosing vectors to construct codes of type
(l0, l1).

Denote the number given by (10) by

[
k0, k1
l0, l1

]
R

. Note that for l0 < 0 or l1 < 0,

we have that

[
k0, k1
l0, l1

]
R

= 0 and for l0 = l1 = 0, we have that

[
k0, k1
0, 0

]
R

= 1.

If k1 = 0 or l1 = 0, then we denote the number by

[
k0
l0, l1

]
R

instead of[
k0, 0
l0, l1

]
R

and

[
k0, k1
l0

]
R

instead of

[
k0, k1
l0, 0

]
R

, respectively.

Note also that for a linear subcode D of type (l0, l1) of a linear code C over R
of type (k0, k1), we have that 2l0 + l1 ≤ 2k0 + k1 and l0 ≤ k0. The first statement
follows from the fact that D is a linear subcode of C. The latter is because of
that any linear subcode with l0 free vectors is contained in a code with at least l0
free vectors. However, the inequality l1 ≤ k1 need not be satisfied. Consider the
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code C over Z4 generated by

(
1 0
0 2

)
which has type (1, 1). The subcode D of C

generated by

(
2 0
0 2

)
has type (0, 2) and 2 6< 1.

Let V be a self-orthogonal code over R of type (l0, l1) such that V ⊆ Hull(C).
Then V ⊥ has type (n− l0− l1, l1). Since V ⊆ Hull(C), we have that V ⊆ C ⊆ V ⊥.
Then the code C has type (k0, k1), where k0 = l0 + s and k1 = l1 + t, for some
integer s and t. However, this does not mean that we are necessarily adjoining s+ t
generators to V to obtain C. For example, over Z4, let V = {(0, 0), (2, 2)}, which is
a non-free linear code of type (0, 1). Then V ⊥ is generated by(

1 1
0 2

)
and has type (1, 1). That is, we have replaced the non-free vector (2, 2) with the
free vector (1, 1) as a generator. This ensures that (2, 2) is still in the code but the
code 〈(1, 1)〉 has type (1, 0) and the code 〈(2, 2)〉 has type (0, 1). Then we adjoin
the non-free vector (0, 2) to get a code of type (1, 1).

Specifically, one possible types for the code C is (1, 0) and it is obtained by
adjoining one vector into the free generators and removing one vector from the non-
free generators, that is s = 1 and t = −1. This can be done because (1, 1) ∈ V ⊥ and
(2, 2) ∈ V and so C is generated by one of the following vectors (1, 1), (1, 3), (3, 1).
This example shows one of the cases when V is any self- orthogonal code over Z4 of
type (l0, l1). A similar case is satisfied for codes over F2[u]/〈u2〉, by simply replacing
the 2 with a u. This type of situation substantially complicates the counting process.
Therefore, in this work, we focus on free Euclidean self-orthogonal codes V over R
and construct linear codes C and so leave the general case for future study.

Lemma 4.32. Let C be a linear code over R, where R = Z4 or R = F2[u]/〈u2〉. Let
Hull(C) be its hull of type (h0, h1). The number of free Euclidean self-orthogonal
codes over R with l0 generators such that V ⊆ Hull(C) is equal to[

h0, h1
l0

]
R

.

Proof. Since Hull(C) is a Euclidean self-orthogonal code over R, each of its sub-
codes is also Euclidean self-orthogonal over R. Hence by Theorem 4.31, counting
free subcodes of the hull gives the desired number.

Lemma 4.33. Let V be a free Euclidean self-orthogonal code over R of length n
with l0 generators, where R = Z4 or R = F2[u]/〈u2〉. The number of linear codes C
over R of length n and type (k0, k1) such that V ⊆ Hull(C) is[

n− 2l0
k0 − l0, k1

]
2,2

.

Proof. Let V be a free Euclidean self-orthogonal code over R of length n with
l0 generators. Then V has type (l0, 0) and V ⊥ is a free linear code and has type
(n−l0, 0). By V ⊆ Hull(C), we have that V ⊆ C ⊆ V ⊥. Then C is a linear code over
R of length n and type (k0, k1). It is clear that l0 ≤ k0 ≤ n− l0 and k1 ≤ n−k0− l0.
Therefore, to construct C, we are choosing k0 − l0 free and k1 non-free generators
among n − 2l0 free generators of V ⊥. Therefore, we apply Theorem 4.31 and get

the number

[
n− 2l0
k0 − l0, k1

]
R

=

[
n− 2l0
k0 − l0, k1

]
2,2

.
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Table 2. The number of codes C when V has length n = 4 and
type = (1, 0)

(k0, k1) N Generators
(1,0) 1 V
(1,1) 3 〈V, 2200〉, 〈V, 2020〉, 〈V, 2002〉.
(1,2) 1 〈V, 2200, 2020〉
(2,0) 6 〈V, 1300〉,〈V, 1030〉, 〈V, 1003〉, 〈V, 0130〉, 〈V, 0103〉, 〈V, 0013〉
(2,1) 3 〈V, 1300, 2020〉, 〈V, 1030, 2200〉, 〈V, 1003, 2020〉
(3,0) 1 〈V, 1300, 1030〉 = V ⊥

Note that if V is a free Euclidean self-orthogonal code over Z4 then its length is
at least 4, so we consider linear codes C over Z4 of length at least 4. This is not the
case when we work codes over F2[u]/〈u2〉. Any free Euclidean self-orthogonal code
over F2[u]/〈u2〉 has at least length 2. For instance, the code generated by 〈(1, 1)〉 is
a free self-orthogonal code of length 1.

Example 10. Let V = {(0, 0, 0, 0), (1, 1, 1, 1), (2, 2, 2, 2), (3, 3, 3, 3)} which is a linear
code over Z4 of type (1, 0). The code V ⊥ has type (3, 0) and it is generated by 1 3 0 0

1 0 3 0
1 0 0 3

 .

Then C has type (k0, k1) such that V ⊆ Hull(C), where k0 + k1 ≤ 3.
Possible values for (k0, k1) are (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (3, 0). Then, by

Lemma 4.33, the number of codes C for each type are given in Table 2.

Theorem 4.34. Let σl0 be the number of free Euclidean self-orthogonal codes over
R of type (l0, 0), where R = Z4 or R = F2[u]/〈u2〉. Let C be a linear code over R of

length n and type (k0, k1). Let Nk0,k1
i0,i1

denote the number of linear codes over R of

length n and type (k0, k1) whose hull has type (i0, i1). Then for all codes C of type
(k0, k1), we have the following

σl0 =

∑
i0=l0,...,k0

i1=0,...,k0+k1−i0

[
i0, i1
l0

]
R

Nk0,k1
i0,i1[

n− 2l0
k0 − l0, k1

]
2,2

(11)

Proof. Let C be a linear code over R of length n and type (k0, k1) with the hull of

type (h0, h1). Then, by Lemma 4.32, Hull(C) contains

[
k0, k1
l0

]
R

free Euclidean

self-orthogonal codes of type (l0, 0). Any free Euclidean self-orthogonal code is con-

tained in the hull of

[
n− 2l0
k0 − l0, k1

]
2,2

distinct linear codes C of type (k0, k1), by

Lemma 4.33. Then the number of distinct free Euclidean self-orthogonal codes σl0
is equal to
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σl0 =

∑
C⊆Rn

Type(C)=(k0,k1)
Type(Hull(C))=(h0,h1)

[
h0, h1
l0

]
R

[
n− 2l0
k0 − l0, k1

]
2,2

,

by considering all the codes over R of type (k0, k1). Then if Nk0,k1
i0,i1

denote the

number of linear codes over R of length n and type (k0, k1) whose hull has type
(i0, i1), we have the result.

Next, we give an example to illustrate the theorem.

Example 11. Let (k0, k1) = (2, 0) and l0 = 1. The number of free Euclidean self-
orthogonal codes over Z4 of length 4 is σ1 = 8. These codes are generated by the
following vectors:

(1, 1, 1, 1), (1, 1, 1, 3), (1, 1, 3, 1), (1, 3, 1, 1), (1, 3, 3, 3)(1, 1, 3, 3), (1, 3, 1, 3), (1, 3, 3, 1).

We need the following calculations to get the number from the formula given by
(11). [

2
1, 0

]
Z4

=

[
2

1, 0

]
2,2

= 6,

[
1, 1
1

]
Z4

= 2.

Then by (11), we get

8 =

∑
i0=1,2
i1=0,1

[
i0, i1
l0

]
Z4

N2,0
i0,i1[

2
1, 0

]
2,2

⇒ 48 =

[
1, 0
1

]
Z4

N2,0
1,0 +

[
1, 1
1

]
Z4

N2,0
1,1 +

[
2, 0
1

]
Z4

N2,0
2,0

48 =

[
1, 1
1

]
Z4

N2,0
1,1

⇒ 24 = N2,0
1,1 ,

where N2,0
1,0 = N2,0

2,0 = 0.

C⊥ has type (2, 0) Therefore the number of linear codes over Z4 of length n and
type (2, 0) with a hull of type (1, 1) is 24. These codes are given by the following
generating matrices:

〈(1, 1, 1, 1),x1〉, 〈(1, 1, 1, 3),x2〉, 〈(1, 1, 3, 1),x3〉,
〈(1, 3, 1, 1),x4〉, 〈(1, 1, 3, 3),x5〉, 〈(1, 3, 1, 3),x6〉.

where xi is one of the vectors given on the corresponding right hand side, for
i = {1, 2, 3, 4, 5, 6} :

x1 = (1, 3, 0, 0), (1, 0, 3, 0), (1, 0, 0, 3), (0, 1, 3, 0), (0, 1, 0, 3), (0, 0, 1, 3),

x2 = (1, 3, 0, 0), (1, 0, 3, 0), (0, 1, 3, 0), (1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1),

x3 = (1, 0, 0, 3), (0, 1, 0, 3), (1, 0, 1, 0), (0, 1, 1, 0),

x4 = (0, 0, 1, 3), (1, 1, 0, 0),
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x5 = (1, 0, 1, 0), (0, 1, 1, 0), (1, 0, 0, 1), (0, 1, 0, 1),

x6 = (1, 1, 0, 0), (0, 0, 1, 1).

Note that for the above example, N2,0
1,0 = N2,0

2,0 = 0. Because C contains a free
Euclidean self-orthogonal code V over Z4 of length 4. Since V is a free Euclidean
self-orthogonal code, we have that the Hamming weight of the only free generator
v is 4. The vector v is also a generator of C, where C is generated by 〈u,v〉 and u
is also a free vector. Then since V ⊂ Hull(C), we have that v is also a generator
of C⊥. Therefore, [u,v] = 0 and so wH(u) is 2, 3 or 4. However, wH(u) 6= 4 since
the type of C is (2, 0). If wH(u) = 2, then [u,u] 6= 0 since each of the nonzero
components of u is 1 or 3 and if wH(u) = 3, then each of the nonzero components
of u is 1, 2, or 3. Therefore, for both of the cases, [u,u] 6= 0 and so u is not contained
in C⊥ but 2u ∈ C⊥ so the only type for the hull of C is (1, 1).

5. Conclusion. In this paper, we have given foundational results on the hull of
both additive and linear codes over the four rings of order 4. This is motivated by
by the fact that codes with very small hulls and very large hulls are highly desired.
That is LCD (ACD for additive) codes and self-dual codes are highly interesting
codes with numerous theoretical and practical applications. We have given formulas
for counting codes in this setting with hulls of a given size. This allows us to count
the number of LCD, ACD, self-orthogonal, and self-dual codes. This is highly
important as it is the major tool used when making an exhaustive search of codes
with certain characteristics.

For further avenues of research, one can consider the general case for non-free
codes over F2[u]/〈u2〉 and Z4. Additionally, one can generalize the techniques de-
scribed here to count the number of linear and additive codes with hulls of a given
type in the rings that are generalizations of these four rings. Namely, fields of order
4, the family of ring Rk, the family of rings Ak, and the rings Zk (see [5] for a
complete description of these families of rings).
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