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Abstract: The design and implementation of a multi-stage PID (MS-PID) controller for non-inertial
referenced UAVs are highly complex. Symmetrical multirotor UAVs are unstable systems, and it is
thought that the kinematics of the symmetrical UAV rotor, such as the quadrotor and hexacopter
resembles the kinematics of an inverted pendulum. Several researchers have investigated the structure
and design of PID controllers for high-order systems during the last decade. The designs were
always concerned with the enhanced response, robustness, model reduction and performance of PID
controllers. An accurate tuning process of such a controller depends on the engineer’s experience
level. This is due to the number of variables and hyperparameters tuned during the process. An
adaptive genetic algorithm (AGA) is utilized to optimize the MS-PID controllers for controlling the
quadrotor in this study. The proposed method optimizes the offline-planned approach, providing
several possibilities for adapting the controllers with various paths and or varying weather conditions.
The MS-PID parameters are optimized in parallel, as every PID controller affects the other controller’s
behavior and performance. Furthermore, the proposed AGA generates new chromosomes for “new
solutions” by randomly developing new solutions close to the previous best values, which will
prevent any local minima solution. This study intends to investigate the design and development of a
highly tuned robust multi-stage PID controller for a symmetrical multirotor UAV. The work presents
a model for a non-referenced inertial frame multirotor UAV (quadcopter). Once the model is defined,
a robust multi-stage PID controller for the non-inertial referenced frame symmetrical multirotor UAV
is designed, tuned, and tested. A genetic algorithm (GA) will be used to tune the MS-PID controller.
Finally, the performance comparison between the proposed and conventional methods is presented.
The results show that the proposed method provides stability improvement, better transient response,
and power consumption.

Keywords: GA; UAV modeling; non-inertial frame of reference; multi-stage PID controller; robust-
ness; nonlinear control

1. Introduction

The real-time PID control of autopilots has been used to control the online navigation
systems of symmetrical UAVs. This is due to structural simplicity, ease of implementation,
and acceptable performances. In such cases, the implementation of controllers is successful
as it does not require complex mathematical development. However, parameter adjustment
or tuning is needed to improve performance through the operating envelope. Therefore,
the choice of the tuning method is essential to guarantee optimum controller parameters.
Several research works were conducted to develop a tuning method to optimally tune PID
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parameters to achieve adequate performances, including fast response, minimum error, and
minimum overshoot/undershoot [1,2]. The tuning difficulty of the PID controller is due to
complex criterion requirements and limitations of system actuators. The traditional PID
controller works well with low-order systems; however, it lacks robustness against large
systems as it cannot handle parameter uncertainties, resulting in an adequate time-domain
response, including overshoot and settling time [3].

UAVs utilize multiple PID controllers [4] to emulate conventional control surfaces and
engine throttle. UAVs have several flight modes, including manual, homing, altitude, and
targeting modes. Therefore, UAVs’ control strategy must use several back-to-back PID
controllers to form one input/output loop. This is usually important in complicated cases,
such as autonomous flight, where the control system of a UAV should be optimally tuned
for each flight mode; multirotor UAV “drones” applications are increasing; some of these
applications play an essential role in our life: fire-fighting, precision agriculture, weather
forecast, shipping and delivery, aerial photography, search and rescue, and others [5–7]. For
such applications, in all cases, special controllers should be designed to control multicopter
flights under severe weather conditions. This process requires selecting a unique path to
achieve the task and is directly related to the Non-Instrument Flight Rules (NIFR) during
its execution. A complete symmetrical multirotor UAV structure understanding is required
for the construction and modeling of the system; previous studies [8–10] confirm that
the symmetrical multirotor UAV system is nonlinear. However, previously, researchers
neglected many terms while converting the nonlinear into a linear system. In some cases,
the linear system representation was as a state-space model [11,12]. All influential forces
and torques enabling the symmetrical multirotor UAV to maintain stability under adverse
weather conditions are considered in this study.

The system’s kinematics are usually described using Euler angle representation [13].
However, in some cases, the Euler angle fails, as it is susceptible to gimbal lock [14]. This
problem is solved using quaternion mathematical representation [15]. Keeping in mind
that gimbal lock happens only in rare cases, thus, to simplify mathematical formulation,
Euler angles are considered for angle representation.

Several studies consider the Instrument Flight Rules (IFR) to reference the transfor-
mations between a body frame and a fixed frame. Therefore, all the position, velocity, and
acceleration transformations depend on the reference’s inertial frame. In some cases, the
UAV is launched from a moving air or sea vessel in search and rescue (SAR) operations
in some applications. In this study, the SAR operations over water are considered; hence,
the UAV should be referenced to a moving vessel. In that case, the symmetrical UAV
should be related to a NIFR. There are some known frames for IFR, such as the geodetic
coordinate system (latitude, longitude and altitude), the earth-centered coordinate system,
and the local north-east-down (NED) or north-east-up (NEU) coordinate systems [11]. IFR
is considered in the modeling of the multirotor UAV system used to determine the system’s
kinematics and dynamics. The NIFR relative reference is added to model the multirotor
UAV body frame position system. This idea of relating the drone to a NIFR can aid in
developing several practical applications.

Due to the circumstances mentioned above, a multi-stage PID (MS-PID) controller is
used for the symmetrical multirotor UAV control. The PID controller is one of the most used
controllers for controlling symmetrical multirotor UAVs [14–17]. The advantage of this
controller is its simplicity; however, such controllers fail in nonlinear systems control, such
as multi-rotors. For PID controller failure to be avoided under nonlinear conditions, the PID
parameters should be selected carefully by considering different operational conditions.
Therefore, an MS-PID controller is proposed to control the position (X,Y,Z) and the angular
position (ϕ,θ,ψ) of the symmetrical multirotor UAV. Thus, six PID controllers are optimized
and used to control the multicopter to achieve high performance. A customized genetic
algorithm (GA) is used to optimize the PID controller’s parameter. Several previous studies
applied GA to optimize the PID controller’s parameter [13–20]; however, these studies did
not consider the asymmetric paths and did not optimize all six controllers simultaneously.
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This directly affects the optimization process outcome, as these controllers depend on
each other to achieve the required stability. In the proposed study, a modified GA is
used to generate the new population of chromosomes using the previous best solutions
instead of making the conventional crossover between parent chromosomes, resulting in
an accelerated optimization process.

Most of the scoped applications in this research generally depend on a predefined path.
The importance of dealing with a predefined path is that optimizing PID parameters can
vary from one path to another under abnormal conditions. Many studies have concentrated
on optimizing the controller parameter with ideal flight conditions. Under abnormal or
severe weather conditions, optimal PID parameters will not provide a satisfactory result,
including flight stability failure. However, if the tests and optimization are carried out with
some of the extreme conditions considered, the resulting controller can be used satisfactorily
and maintain acceptable stability. However, suppose the wind disturbances and the wind
direction are taken into consideration during the optimization process. In that case, the
multicopter will always try to resist the wind effect. If the overall flight error is studied, it
can be seen that the error due to the wind direction is higher than others, which is expected.
However, suppose it is intended to optimize the flight for specific disturbances, as in offline
path optimization and NIFR. In that case, the PID controller optimization should be carried
out in parallel, as suggested in the proposed method.

The structure of this paper is as follows: In Section 2, a mathematical model of the 6
Degrees of Freedom (6-DOF) quadrotor system is described, including the transformations
between IFR, NIFR and the body frame. Section 3 describes the construction of multi-
stage PID controllers to control the quadrotor system’s position and orientation. AGA
modification and the PID parameters optimization process are introduced in Section 4.
Section 5 illustrates the numerical simulations and results discussions. In Section 6, the
conclusions of the study are presented.

2. Symmetrical Quadcopter Modeling
2.1. Definition of Symmetrical UAV Quadrotor Variables

The following are important base terms and symbols, as they are used in equations
and matrices in this study. Table 1 illustrates the terms of symbols used in this study.

ξ =

 x
y
z

, η =

 ϕ
θ
ψ

, Vb =

 ub
vb
wb

, Vi =

 ui
vi
wi

 (1)

.
ξ =

 .
x
.
y
.
z

, W =

 p
q
r

,
.
η =


.
ϕ
.
θ
.
ψ

,
..
ξ =

 ..
x
..
y
..
z

 (2)

.
Vi =

 .
ui.
vi.
wi

,
.

W =

 .
p
.
q
.
r

,
..
η =


..
ϕ
..
θ
..
ψ

 (3)

2.2. Transformation between Frames

To explain the kinematics of the symmetrical UAV quadrotor, it is necessary to under-
stand the transition between the inertial frame and the body frame. The transition between
frames may be represented by a set of rotations. The rotation matrices are used to transform
any point from the inertial frame to the body frame. The rotation matrix can easily be
explained by the vector projections of each axis as follows:

R =

 x1·x0 y1·x0 z1·x0
x1·y0 y1·y0 z1·y0
x1·z0 y1·z0 z1·z0

 (4)
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Table 2 illustrates the vector projection of the symmetrical UAV quadrotor, and when
considering the rotation about z-axis by angle ψ, as shown in Figure 1.

Table 1. Symmetrical UAV quadrotor modeling terms and symbols.

Description Symbol Units

Absolute linear position of the symmetrical
quadrotor defined in the inertial frame ξ meters (m)

Angular position referenced to the inertial frame η radian (rad)

Linear velocities of the body frame Vb meter/second (m/s)

Linear velocities of the body expressed in the
inertial frame coordinate

.
ξ, Vi meter/second (m/s)

Angular velocities of the body frame W radian/second (rad/s)

Angular velocities of the body frame expressed
in the inertial frame

.
η radian/second (rad/s)

Linear acceleration of the body frame expressed
in the inertial frame

..
ξ,

.
Vi m/s2

Angular acceleration of the body frame
.

W rad/s2

Angular acceleration of the body frame
expressed in the inertial frame

..
η rad/s2

Table 2. Vector projection.

x1·x0 = cos(ψ) y1·x0 = − sin(ψ) z1·x0 = 0

x1·y0 = sin(ψ) y1·y0 = cos(ψ) z1·y0 = 0

x1·z0 = 0 y1·y0 = 0 z1·z0 = 1
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Figure 1. Roll-Pitch-Yaw rotations.

A set of rotations can represent a transformation between the inertial frame and body
frame; thus, rotation matrices can be used to transform any point from the inertial frame to
the body frame. The rotation matrix can easily be explained by the projections of each axis
vector [18]. From the projections of the three vectors, the resultant rotational transformation
matrix for the Roll-Pitch-Yaw representation “ZYX Euler angles” is as follows:

RZ,Y,X =

 CθCψ CψSθSφ − CφSψ SφSψ + CφCψSθ

CθCψ CφCψ + SθSφSψ CφSθSψ − CψSφ

−Sθ CθSφ CθCφ

 (5)

Linear velocity in the inertial frame
.
ξ = [

.
x

.
y

.
z ]T is obtained by multiplying rota-

tion matrix R by the linear velocity of the quadrotor in the body frame Vb = [ ub vb wb ]T .
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For linear velocity, the transformation matrix does not change with time. On the other
hand, the angular velocity transformation matrix depends on time w = dθ

dt . The derivation
of the rotation matrix, such as the skew matrix, is used to determine the angular velocity
vector. The rotation matrix can be derived as follows:

.
R =

dR
dt

=
dR
dθ

dθ

dt
=

.
θS(i)R(t) = S(ω(t))R(t) (6)

where S(ω(t)) is the skew-symmetric for the angular velocity vector ω(t), ω(t) is the
angular velocity vector of a rotating frame referenced to the fixed frame at time t, θ is the
angle of rotation. Thus, the general rule is:

.
R0

n = S
(

ω0
0,n

)
R0

n (7)

where ω0
0,n links the current frame with the base frame and next frame. R0

n is the rotation
matrix between frames,

ω0
0,3 = ω0

0,1 + R0
1ω1

1,2 + R0
2ω2

2,3 (8)

For the quadrotor, three axes should be considered. Thus, three relative transforma-
tions are done to obtain the angular velocity vector,

ω0
0,3 =

 1
0
0

 .
φ +

 0
cos(φ)
−sin(φ)

 .
θ +

 −sin(θ)
cos(θ)sin(φ)
cos(φ)cos(θ)

 .
ψ (9)

The angular velocity vector of the quadrotor in body frame ω = [p q r]T is obtained by: p
q
r

 =

 1 0 −sin(θ)
0 cos(φ) cos(θ)sin(φ)
0 −sin(φ) cos(φ)cos(θ)




.
φ
.
θ
.
ψ

 (10)

The angular velocity vector of the quadrotor in the inertial frame obtained by the
inverse of the angular velocity matrix,

.
φ
.
θ
.
ψ

 =

 1 sin(φ)tan(θ) cos(φ)tan(θ)
0 cos(φ) −sin(φ)
0 sin(φ)/cos(θ) cos(φ)/cos(θ)

 p
q
r

 (11)

It can be seen that many forces affect the linear and rotational motion of multicopter.
The most essential and effective forces as, gravitational force Fg, thrust force Ft and aerody-
namic drag force Fd are considered in this research. It is assumed that the quadrotor is a
rigid body, so all the forces produced by the rotors will have only one direction parallel to
the z-axis of the body frame [19,20].

ft =
4

∑
i=1

fi = k
4

∑
i=1

ω2
i (12)

where fi is the force generated by each rotor i with an angular velocity ωi along zb axis, k is
the lift constant.

Ft =

 SφSψ + CφCψSθ

CφSθSψ − CψSφ

CθCφ

 ft (13)
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Ft represents the thrust force vector generated by the rotors mounted over the quadrotor.

Fd =

 Dx
Dy
Dz

 =
1
2

ρair I

 Ax
Ay
Az

 V2
x 0 0

0 V2
y 0

0 0 V2
z

 Cx
Cy
Cz

 (14)

where ρ is the density of air, Ai is the cross-sectional area of the quadrotor exposed to wind,
V is the speed of quadrotor relative to wind speed, C f is the drag coefficient referenced to
the inertial frame [21]. The total force vector affecting the motion of the quadrotor will be:

F = m

 ..
x
..
y
..
z

 =

 0
0
−mg

+

 SφSψ + CφCψSθ

CφSθSψ − CψSφ

CθCφ

 ft +

 Dx
Dy
Dz

 (15)

The linear acceleration of the quadrotor body is obtained from the resultant force F,
..
xb

..
yb

..
zb

 =

 ((
SφSψ + CφCψSθ

)
fx + Dx

)
/m((

CφSθSψ − CψSφ

)
fy + Dy

)
/m(((

CθCφ

)
fz + Dz

)
/m
)
− g

 (16)

The rotational dynamics investigation is achieved by Euler–Lagrange and Newton–
Euler methods. The Newton–Euler method sums all the forces that impact the quadrotor
body [12,22]. The main Newton–Euler equation is given as:

τ = I
.
v + v x (Iv) + Γ (17)

where τ is generated torques by rotors, I
.
v is the angular acceleration generated by the

inertia of the quadrotor, v x (Iv) are centripetal forces, Γ is gyroscopic forces. The total
torque vector generated by rotors can be expressed as follows:

ΣT
τφ

τθ

τψ

 =


cT cT cT cT
0 lcT 0 −lcT
−lcT 0 lcT 0
−cQ cQ −cQ cQ




ω2
1

ω2
2

ω2
3

ω2
4

 (18)

where cT is the lumped variable of thrust factor proportion to the motor-prop system, cQ is
torque factor for the motor-prop system, l is the length of the quadrotor arm.

v x (Iv) =

 p
q
r

x

 Ixx p
Iyyq
Izzr

 (19)

where Ixx, Iyy and Izz represent the moment of inertia terms relative to the center of mass.

Γ = Ir

 p
q
r

x

 0
0
1

ωΓ (20)

where Ir is the moment of inertia for each rotor, ωΓ is the summation of the angular speed
with respect to rotation direction, ωΓ = ω1 −ω2 + ω3 −ω4. Thus, the angular acceleration
will be as follows:

.
υ =

 .
p
.
q
.
r

 =

 (
Iyy − Izz

)
qr/Ixx

(Izz − Ixx)pr/Iyy(
Ixx − Iyy

)
pq/Izz

− Ir

 q/Ixx
−p/Iyy

0

ωΓ +

 τφ/Ixx
τθ/Iyy
τψ/Izz

 (21)
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The resultant equation of angular acceleration in the body frame can be transformed
from the body frame to the inertial frame by finding the inverse of the above equations
as follows:

..
η =


0

.
φCφTθ +

.
θSφ

C2
θ

−
.
φSφCθ +

.
θCφ

C2
θ

0 −
.
φSφ −

.
φCφ

0
.
φCφ

Cθ
+

.
φSφTθ

Cθ
−

.
φSφ

Cθ
+

.
θCφTθ

Cθ


 p

q
r

+ W−1
η

 .
p
.
q
.
r

 (22)

The linear and angular acceleration vector of the system will be as follows:[ ..
ξ

..
η
]T

=
[

..
x

..
y

..
z

..
φ

..
θ

..
ψ
]T

(23)

From this vector, we can derive angular acceleration vector, linear acceleration vector,
angular position vector and linear position vector. At this point, the modeling of the
quadrotor is completed, and we can now design our controller. Some modifications were
carried out to transform IFR and NIFR. Generally, velocity expressed in the body frame is
multiplied with a rotation matrix to obtain an acceleration of the UAV quadrotor expressed
in IFR as follows: 

.
xi

b
.
yi

b
.
zi

b

 = R

 ub
vb
wb

 (24)

The relation between the quadrotor body frame and the vessel moving frame can be
obtained in two steps: First, by considering the relation between the body frame and IFR,
second, by considering the relation between the moving frame and IFR, which is followed
by combining them as:

.
ξ

m
b =

.
ξ

i
b −

.
ξ

i
m =


.
xi

b
.
yi

b
.
zi

b

−


.
xi

m
.
yi

m
.
zi

m

 =

 .
xm

b.
ym

b.
zm

b

 (25)

Velocity error =
.
ξ

m
desired −

.
ξ

m
b (26)

where
.
ξ

i
b is the position state vector of the body frame related to IFR,

.
ξ

i
m is the position

state vector of the moving frame related to IRF, while
.
ξ

m
b is the resultant position state

vector. Usually, the state feedback vector of position, velocity, angular position and angular
velocity relation to IRF is expressed as follows:

.
x = [x y z u v w φ θ ψ p q r]T (27)

In the case of NIFR, the state of position and velocity of the moving frame should be
included in the state feedback vector,

.
x =

[
xb yb zb ub vb wb xm ym zm
um vm wm φ θ ψ p q r

]T

(28)

The error of position vector in the body frame is a combination of referencing the
position feedback state of the body frame with position feedback state of the moving frame
as given below,

xb
err = xm

d + xi
m − xi

b (29)

where xm
d is the desired position in the x-axis referenced to the moving frame (NIFR), xi

m is
position state of the moving frame, xi

b is the position state of the body frame referenced to
the inertial frame. The same procedure is used for the y-axis and z-axis.
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3. Multi-Stage PID Controller

In this study, it is proposed to use a PID controller for the control of the quadrotor. The
PID controller is chosen as it will provide the desired stability with minimum mathematical
calculations. The simplicity of the controller is important due to the limitation of processor,
memory and physical microcontroller specifications. The mathematical formulation of the
PID is expressed in the s-domain as follows:

u(t) = Kpe(t) + Ki

∫
e(t)dt + Kd

de(t)
dt

(30)

The main assumption in this study is to take a signal from a specific path as command
input to the system. The path provides the information of the X, Y and Z position in
time-series as an input to the system; also, the path command provides the required Psi
angle of the quadrotor. The Phi and Roll angle commands are passed after processing the X
and Y command. The overall structure of the system and controller is given in Figure 2.
The system block of Figure 3 contains symmetrical UAV dynamics. In the previous section,
the dynamics of the system were explained; the system block is considered as a black box
with inputs and outputs. The block system inputs are angular velocities of the rotors (w_1,
w_2, w_3, w_4), the outputs of the block system are the states of the system and contains
the symmetrical UAV velocity vector (u, v, w), the angular velocity vector (p, q, r), position
vector (x, y, z), and angular position vector (ϕ, θ, ψ), as shown in Figure 4. The controller
consists of three stages; the first stage is the X and Y position controller. The second stage is
the altitude controller to control the Phi, Theta, Psi and Z commands. The third stage is the
translation from Phi, Theta, Psi, and the altitude correction signals to a throttle signal as an
input to four rotors. The first stage controller inputs are the X, Y and Psi angle commands
where X and Y are feedback states, and U and V are the velocities as the change of position
feedback. The outputs are the Phi and Theta angles commands, as shown in Figure 5. The
representation of position error in the inertial frame is expressed as:

xi
err = xi

cmd − xi
state (31)

yi
err = yi

cmd − yi
state (32)
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The error signal is multiplied with the rotation matrix to transform the error signal
from the inertial frame to the body frame.

xb
err = xi

err cos(ψ) + yi
err sin(ψ) (33)

yb
err = yi

err cos(ψ)− yi
err sin(ψ) (34)

The x and y errors represented in the body frame will be transformed as a velocity
signal in the desired axis to overcome the error in that axis,

ub
desired = xb

err (35)

vb
desired = yb

err (36)
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The velocity error will be the difference between the desired velocity ub
desired in the

x-axis and the state feedback velocity ub
state. The output of the controller will be the angle

command θcmd. The maximum and minimum angle of inclination “bank angle” should be
considered to avoid losing control during flight.

θcmd =


−12o, θ ≤ −12o

Kp

(
Ub

desired −Ub
state

)
− KdUb

state, −12o < θ < 12o

12, θ ≥ 12o
(37)

Of course, the bank angle varies from one application to another; even some quadrotors
are designed for acrobatic flights and sports competitions. In such cases, the bank angle
will be unlimited. The same procedure is followed to obtain ϕcmd.

Initially, all six controllers were PID controllers, but during the optimization process
with AGA, the controller of the x and y axes changed to PD controller. Hence, the optimiza-
tion process sets the integral parameter for the x and y axes controllers to zero. In this case,
the PD controller provided better performance than PID.

The inputs to the second stage controller are ϕcmd, θcmd, ψcmd and zcmd command
signals, ϕstate, θstate, ψstate, Pstate, Qstate and Rstate are feedback states to the controller. For
example, the controller compensates the angle commands and altitude (z) command as a
correction signal. The controller structure is given in Figure 6. The mathematical formula
of the second stage controller is given below, the same formula for ϕ, ψ, and z:

θComp(t) = Kp(θcmd(t)− θstate(t)) + Ki

∫
(θcmd(t)− θstate(t))dt + Kd ∗Qstate(t) (38)
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The second stage’s output will be an input to the third stage; in this part, the controller
will translate the compensation values to the throttle command “Rotors command”. The
throttle signal Thi of each rotor, i can be given by:

Th1
Th2
Th3
Th4

 =


1 −1 −1 −1
1 1 −1 1
1 1 −1 −1
1 −1 1 1




Zcomp
ϕcomp
θcomp
ψcomp

 (39)

Mi
cmd =


0, Thi ≤ Thmin

a ∗ Thi + b, Thmin < Thi < Thmax
a ∗ Thmax + b, Thi ≥ Thmax

(40)

where a and b are constants and obtained from the motor specification, the motor command
is considered as an input to the motor’s dynamics system block. The output is the rotor
angular velocity given in a revolutions per minute (rpm) signal; the motor block system is
shown in Figure 7.
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4. Genetic Algorithm

GA generally follows these steps: genetic representation, initial population, fitness
function, genetic operations. For genetic representation, every gene/individual represents
a PID parameter in decimal number format, each PID controller contains 3 genes repre-
sented as Kp, Ki and Kd values. Thus, we have 6 PID controllers for (x, y, z, ϕ, θ, ψ), one
chromosome consists of 18 genes.

The adaptive GA only differs from the conventional GA in the way it generates the
new population. In conventional GAs, generating a new population consists of selecting
parents and the crossover process. However, the proposed adaptive GA method divides
the generation process into three steps:

(1) The solutions are tested, then they are sorted as such that the first chromosome
is the best solution, then the second solution is the second chromosome, and so
on. The selection process is then accomplished by choosing the best half of the
sorted population. The best-sorted half of the population will be the new parent
chromosomes. Then, using the crossover process, 50% of the new population is
generated.

(2) Generated constrained random solutions are around one-third of the best-sorted
solutions of the random gain range value (the gain range is very small), see Figure 8;
30% of the new population is generated using this method.

(3) Generated constrained random solutions are around one-fifth of the best-sorted
solutions of the old population. The main difference between this step and the
previous step is the use of a wider gain range of a random value. The aim of this step
is to avoid falling into the local minimum solution. This step can be considered as a
mutation to refresh the optimization process.



Symmetry 2022, 14, 689 12 of 17Symmetry 2022, 14, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 8. PID random values constraints. 

Using decimal numbers format makes generating an initial constrained population 

easier, and it will help to generate new constrained random chromosomes. The base val-

ues of the PID parameters were taken from a previous study [13], and then a constrained 

random function with different weights generated 100 chromosomes close to the base val-

ues of the initial population. New chromosomes are generated by summing individual 

genes with a random constraint weight. The formula for generating the initial random 

population is given below: 

𝑘𝑚
𝑛 (𝑙) = 𝑘𝑚

𝑛 (𝑏𝑎𝑠𝑒) + (𝑅 ∗ 𝑎𝑚
𝑛 − 𝑏𝑚

𝑛 ) (41) 

where 𝑘  is the gain parameter, 𝑚  is gain type {P, I, 𝑎𝑛𝑑 D} , n is the axis or angle 

{𝑥, 𝑦, 𝑧, 𝜑, 𝜃, 𝜓}, 𝑙 is the number of the chromosome in the initial population, 𝑅 is a ran-

dom number between zero and one, a is the width of random values, b is the offset of 

random values. Limiting gain values prevents the system from entering an unstable re-

gion. It can prevent MATLAB from running the process normally—it can cause an infinite 

processing loop if it happens. The fitness function can be the sum of squared error, abso-

lute error, squared time-weighted error, or a mix of other functions. In this study, the sum 

of squared error and max of squared error was used. The fitness function was constructed 

as a sum of squared error for each PID controller, the maximum error for each PID con-

troller, and the sum of squared error for all PID controllers’ results. Each term is multi-

plied by a weight value and these weight values can be changed by the user depending 

on the response and performance of AGA operations. The overall fitness value (FV) will 

be as follows: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 = 𝑤1 ∗ ∫ 𝑒𝑡𝑜𝑡𝑎𝑙
2 (𝑡)𝑑𝑡

∞

0

+ ∑(𝑤2 ∗ ∫ 𝑒𝑖
2(𝑡)𝑑𝑡

∞

0

6

𝑖

+ 𝑤3 ∗ 𝑚𝑎𝑥 (42) 

where 𝑖 represents PID source, 𝑖 = {𝑥, 𝑦, 𝑧, 𝜑, 𝜃, 𝜓}, 𝑒𝑖  represents an error of each PID 

controller, 𝑒𝑡𝑜𝑡𝑎𝑙 represents the total error of all PID controllers. Each chromosome will 

be evaluated depending on its fitness value. Then, the chromosomes are sorted; thus, the 

best chromosome “solution” is the first chromosome in the population. 

Adaptive GA advantages can be summarized as follows. 

• It uses a small number of chromosomes within the population, resulting in a mini-

mized processing time for each iteration; 

• Adaptive PID gains values for an improved control system, as shown in Equation 

(41); 

Figure 8. PID random values constraints.

Using decimal numbers format makes generating an initial constrained population
easier, and it will help to generate new constrained random chromosomes. The base values
of the PID parameters were taken from a previous study [13], and then a constrained
random function with different weights generated 100 chromosomes close to the base
values of the initial population. New chromosomes are generated by summing individual
genes with a random constraint weight. The formula for generating the initial random
population is given below:

kn
m(l) = kn

m(base) + (R ∗ an
m − bn

m) (41)

where k is the gain parameter, m is gain type {P, I, and D}, n is the axis or angle {x, y, z, ϕ, θ, ψ},
l is the number of the chromosome in the initial population, R is a random number between
zero and one, a is the width of random values, b is the offset of random values. Limiting
gain values prevents the system from entering an unstable region. It can prevent MATLAB
from running the process normally—it can cause an infinite processing loop if it happens.
The fitness function can be the sum of squared error, absolute error, squared time-weighted
error, or a mix of other functions. In this study, the sum of squared error and max of
squared error was used. The fitness function was constructed as a sum of squared error for
each PID controller, the maximum error for each PID controller, and the sum of squared
error for all PID controllers’ results. Each term is multiplied by a weight value and these
weight values can be changed by the user depending on the response and performance of
AGA operations. The overall fitness value (FV) will be as follows:

Fitness value = w1 ∗
∫ ∞

0
e2

total(t)dt +
6

∑
i
(w2 ∗

∫ ∞

0
e2

i (t)dt + w3 ∗max (42)

where i represents PID source, i = {x, y, z, ϕ, θ, ψ}, ei represents an error of each PID
controller, etotal represents the total error of all PID controllers. Each chromosome will be
evaluated depending on its fitness value. Then, the chromosomes are sorted; thus, the best
chromosome “solution” is the first chromosome in the population.

Adaptive GA advantages can be summarized as follows.

• It uses a small number of chromosomes within the population, resulting in a minimized
processing time for each iteration;

• Adaptive PID gains values for an improved control system, as shown in Equation (41);
• It improves performance by avoiding falling in the local minimum by widening the

range of the gains for 20% of a new generation;
• Each iteration gains range change is based on the best solution.
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5. Simulation and Results

For the simulation, the symmetrical UAV quadrotor specifications are based on actual
measurements carried out by a previous study [13]. The symmetrical UAV (quadcopter)
weight is about 1 kg with a diameter of 44 cm. The results of the multi-stage controller
are obtained by employing a random path to obtain the desired coordinates (x, y, z, ψ),
and the coordinates are given as a time-series signal. The signal is used as an input to
the multicopter system. In this study, the path is not symmetrical. This will be useful if
an offline optimization for specific paths is to be performed. In this study, the path is not
symmetric. Therefore, it is imperative to conduct offline optimization for a specific path.
The simulation steps are shown in Table 3, and the time-series function in MATLAB gives a
smooth and gradual transition between steps.

Table 3. Desired path represented in time-series.

Steps Time
(Seconds)

x-Axis
(Meter)

y-Axis
(Meter)

z-Axis
(Meter)

Psi Angle
(Degree)

1 0 0 0 3 0
2 5 0 0 3 0
3 10 20 0 3 0
4 15 20 5 3 0
5 20 40 5 3 0
6 25 60 5 3 0
7 30 80 10 3 0

The integral square error of both the conventional GA and the adaptive GA is given in
Table 4.

Table 4. Comparison of ISE between GA and AGA.

Number Conventional GA ISE Adaptive GA ISE

1 395,87 395,87
2 397,198 363,929
3 388,363 354,026
4 384,874 337,825
5 384,803 318,168
6 384,490 310,480
7 384,106 314,313
8 384,106 307,316
9 381,619 290,028
10 381,625 386,261

A comparison between the desired path and simulated path was carried out before
and after AGA optimization. Figure 9 shows the results in 2D for the x and y axes. The
unoptimized results show that the symmetrical UAV quadrotor missed the path after a
sharp turning by 1.77 m before recovering and following the correct path. However, the
genetically optimized quadrotor results missed the path by only 0.76 m. The results also
show that the symmetrical UAV quadrotor’s optimization process to recover and return
to the desired position is much faster, and is with better performance and less power
consumption. Meaning, that the optimization has significantly improved the response,
which positively affected the command and the results of both Phi and Theta angles, as
shown in Figures 10 and 11, thus resulting in an improvement in the stability of the system.
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Figure 12 shows the step response on the z-axis. It can be seen that the optimiza-
tions significantly improved the overshoot and transient response as well as the overall
performance and power consumption.
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The close to zero overshoot result is due to a take-off command signal. This is sim-
ulated as a sharp step signal over the z-axis without any movement in other directions;
optimizing this movement can be considered easier than others since the activity is on a
single axis. However, the next steps also affect the altitude, but fast recovery is achieved
due to the controller robustness. The enhanced performance results were made possible by
optimizing all the PID controller parameters in parallel.

The output of the y-axis controller improves the Phi angle command. Figure 10 shows
the controller commands and responses for the Phi angle. The sample interval between
15 and 17 s of flight simulation shows the differences between the command signals and
response signals before and after AGA optimization. In this interval, to reach the desired
position, the controller gave a command to the Phi angle to turn by 6.6 degrees; however,
AGA optimization reduced the command signal by about 30% to 4.8 degrees. Thus, the
symmetrical UAV quadrotor reaches the desired position with a smaller Phi angle, which
means more stability and less power consumption. The maximum delay between the
command and control signal before AGA optimization is 0.6 s; in some cases, this delay can
affect the stability, but after AGA optimization, the maximum delay between the command
and control signal becomes 0.14 s, which means a 75% improvement.

Figure 11 shows a scoped interval to study the characteristics of commands and
response signals. At the fifth second of flight simulation, a sharp step command was
given by the x-axis controller, trying to follow the desired position. The command signal
reached its predefined limit by 12 degrees; this action is shown as a step input on the
Theta angle; this action will aid in the system characteristics investigation. AGA improved
the rising time off tr = 0.84 s achieved by conventional GA down to tr = 0.28 s . The
optimization improved the response time of the system, plus a clear overshot improvement
from PO = 18.5% down to 5.25. The Psi angle command is zero; however, it is greatly
affected by the activities of other controller responses and actions.

The effect, as shown in Figure 13, is an oscillatory one that increases with time. Since
the oscillation amplitude increases, it can be seen that it will reach instability at some point.
Figure 12 shows the AGA optimization improved the controller’s ability to deal with the
oscillation. The results show that the optimized Psi angle controller fully recovers after
each side effect caused by the actions of other controllers.
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The total thrust consumed during the test flight was 1.26× 105; however, the total
thrust consumed for the same flight employing the optimized controllers was 1.05× 105.
This is a clear indication that the AGA optimization introduced a 16.2% thrust consumption
improvement. To evaluate the efficiency of the proposed adaptive GA optimization method
a full test was carried out using a conventional GA to optimize the controllers. This was
then compared with the results [5] obtained using the AGA optimized controllers. In both
tests, a population of 100 was used with 100 chromosomes in the initial population. The
results were recorded for 10 iteration runs. In both cases, the evaluation is based on the
MSE for all the PID controllers.

6. Conclusions

In this study, complete modeling of a nonlinear 6-DOF symmetrical UAV quadro-
tor system was introduced and included the relationship between the body frame of
the symmetrical UAV quadrotor and the non-inertial frame of reference. A multi-stage
PID controller was designed and used to control the quadrotor system. An adaptive ge-
netic algorithm was developed and used to optimize the performance of multi-stage PID
controllers. Optimizing multi-stage PID controllers with an adaptive genetic algorithm
improved the quadrotor system’s performance and power consumption. The AGA had an
added advantage over the conventional GAs; the AGA is guaranteed to avoid falling into
local minima. It also required fewer iterations to achieve highly improved optimization
results. From the results, it can be concluded that the use of the optimized multi-stage
PID controller improved the system’s overall performance. The results showed that the
proposed system outperformed the performance achieved by previous studies for similar
system specifications.
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